kemuriririn's picture
init
60ea83f
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
import math
from typing import List, Optional
import torch
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy
from tqdm import tqdm
from AR.models.utils import (
dpo_loss,
get_batch_logps,
make_pad_mask,
make_pad_mask_left,
make_reject_y,
sample,
topk_sampling,
)
from AR.modules.embedding import SinePositionalEmbedding, TokenEmbedding
from AR.modules.transformer import LayerNorm, TransformerEncoder, TransformerEncoderLayer
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024,
}
# @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
# Efficient implementation equivalent to the following:
def scaled_dot_product_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
B, H, L, S = query.size(0), query.size(1), query.size(-2), key.size(-2)
if scale is None:
scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
else:
scale_factor = scale
attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask, float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_weight.masked_fill_(attn_mask, 0)
else:
attn_mask[attn_mask != float("-inf")] = 0
attn_mask[attn_mask == float("-inf")] = 1
attn_weight.masked_fill_(attn_mask, 0)
return attn_weight @ value
@torch.jit.script
class T2SMLP:
def __init__(self, w1, b1, w2, b2):
self.w1 = w1
self.b1 = b1
self.w2 = w2
self.b2 = b2
def forward(self, x):
x = F.relu(F.linear(x, self.w1, self.b1))
x = F.linear(x, self.w2, self.b2)
return x
@torch.jit.script
class T2SBlock:
def __init__(
self,
num_heads,
hidden_dim: int,
mlp: T2SMLP,
qkv_w,
qkv_b,
out_w,
out_b,
norm_w1,
norm_b1,
norm_eps1,
norm_w2,
norm_b2,
norm_eps2,
):
self.num_heads = num_heads
self.mlp = mlp
self.hidden_dim: int = hidden_dim
self.qkv_w = qkv_w
self.qkv_b = qkv_b
self.out_w = out_w
self.out_b = out_b
self.norm_w1 = norm_w1
self.norm_b1 = norm_b1
self.norm_eps1 = norm_eps1
self.norm_w2 = norm_w2
self.norm_b2 = norm_b2
self.norm_eps2 = norm_eps2
self.false = torch.tensor(False, dtype=torch.bool)
@torch.jit.ignore
def to_mask(
self,
x: torch.Tensor,
padding_mask: Optional[torch.Tensor],
):
if padding_mask is None:
return x
if padding_mask.dtype == torch.bool:
return x.masked_fill(padding_mask, 0)
else:
return x * padding_mask
def process_prompt(
self,
x: torch.Tensor,
attn_mask: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
torch_sdpa: bool = True,
):
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k.shape[1]
q = self.to_mask(q, padding_mask)
k_cache = self.to_mask(k, padding_mask)
v_cache = self.to_mask(v, padding_mask)
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
if torch_sdpa:
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
else:
attn = scaled_dot_product_attention(q, k, v, attn_mask)
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
def decode_next_token(
self,
x: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
attn_mask: torch.Tensor = None,
torch_sdpa: bool = True,
):
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
k_cache = torch.cat([k_cache, k], dim=1)
v_cache = torch.cat([v_cache, v], dim=1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k_cache.shape[1]
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
if torch_sdpa:
attn = F.scaled_dot_product_attention(q, k, v, (~attn_mask) if attn_mask is not None else None)
else:
attn = scaled_dot_product_attention(q, k, v, attn_mask)
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
attn = F.linear(attn, self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w1,
self.norm_b1,
self.norm_eps1,
)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
@torch.jit.script
class T2STransformer:
def __init__(self, num_blocks: int, blocks: List[T2SBlock]):
self.num_blocks: int = num_blocks
self.blocks = blocks
def process_prompt(
self,
x: torch.Tensor,
attn_mask: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
torch_sdpa: bool = True,
):
k_cache: List[torch.Tensor] = []
v_cache: List[torch.Tensor] = []
for i in range(self.num_blocks):
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
k_cache.append(k_cache_)
v_cache.append(v_cache_)
return x, k_cache, v_cache
def decode_next_token(
self,
x: torch.Tensor,
k_cache: List[torch.Tensor],
v_cache: List[torch.Tensor],
attn_mask: torch.Tensor = None,
torch_sdpa: bool = True,
):
for i in range(self.num_blocks):
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(
x, k_cache[i], v_cache[i], attn_mask, torch_sdpa
)
return x, k_cache, v_cache
class Text2SemanticDecoder(nn.Module):
def __init__(self, config, norm_first=False, top_k=3):
super(Text2SemanticDecoder, self).__init__()
self.model_dim = config["model"]["hidden_dim"]
self.embedding_dim = config["model"]["embedding_dim"]
self.num_head = config["model"]["head"]
self.num_layers = config["model"]["n_layer"]
self.norm_first = norm_first
self.vocab_size = config["model"]["vocab_size"]
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
self.p_dropout = config["model"]["dropout"]
self.EOS = config["model"]["EOS"]
self.norm_first = norm_first
assert self.EOS == self.vocab_size - 1
# should be same as num of kmeans bin
# assert self.EOS == 1024
self.bert_proj = nn.Linear(1024, self.embedding_dim)
self.ar_text_embedding = TokenEmbedding(
self.embedding_dim,
self.phoneme_vocab_size,
self.p_dropout,
)
self.ar_text_position = SinePositionalEmbedding(
self.embedding_dim,
dropout=0.1,
scale=False,
alpha=True,
)
self.ar_audio_embedding = TokenEmbedding(
self.embedding_dim,
self.vocab_size,
self.p_dropout,
)
self.ar_audio_position = SinePositionalEmbedding(
self.embedding_dim,
dropout=0.1,
scale=False,
alpha=True,
)
self.h = TransformerEncoder(
TransformerEncoderLayer(
d_model=self.model_dim,
nhead=self.num_head,
dim_feedforward=self.model_dim * 4,
dropout=0.1,
batch_first=True,
norm_first=norm_first,
),
num_layers=self.num_layers,
norm=LayerNorm(self.model_dim) if norm_first else None,
)
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.ar_accuracy_metric = MulticlassAccuracy(
self.vocab_size,
top_k=top_k,
average="micro",
multidim_average="global",
ignore_index=self.EOS,
)
blocks = []
for i in range(self.num_layers):
layer = self.h.layers[i]
t2smlp = T2SMLP(
layer.linear1.weight,
layer.linear1.bias,
layer.linear2.weight,
layer.linear2.bias,
)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps,
)
blocks.append(block)
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
x_mask = make_pad_mask(x_lens)
y_mask = make_pad_mask(y_lens)
y_mask_int = y_mask.type(torch.int64)
codes = y.type(torch.int64) * (1 - y_mask_int)
# Training
# AR Decoder
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
x_len = x_lens.max()
y_len = y_lens.max()
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
ar_xy_padding_mask = xy_padding_mask
x_attn_mask = F.pad(
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
(0, y_len),
value=True,
)
# x_attn_mask[:, x_len]=False
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
diagonal=1,
),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
bsz, src_len = x.shape[0], x_len + y_len
_xy_padding_mask = (
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.num_head, -1, -1)
.reshape(bsz * self.num_head, 1, src_len)
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
# x 和完整的 y 一次性输入模型
xy_pos = torch.concat([x, y_pos], dim=1)
return xy_pos, xy_attn_mask, targets
def forward(self, x, x_lens, y, y_lens, bert_feature):
"""
x: phoneme_ids
y: semantic_ids
"""
reject_y, reject_y_lens = make_reject_y(y, y_lens)
xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask,
)
x_len = x_lens.max()
logits = self.ar_predict_layer(xy_dec[:, x_len:])
###### DPO #############
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(
x, x_lens, reject_y, reject_y_lens, bert_feature
)
reject_xy_dec, _ = self.h(
(reject_xy_pos, None),
mask=reject_xy_attn_mask,
)
x_len = x_lens.max()
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
# loss
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
loss = loss_1 + loss_2
return loss, acc
def forward_old(self, x, x_lens, y, y_lens, bert_feature):
"""
x: phoneme_ids
y: semantic_ids
"""
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
x_mask = make_pad_mask(x_lens)
y_mask = make_pad_mask(y_lens)
y_mask_int = y_mask.type(torch.int64)
codes = y.type(torch.int64) * (1 - y_mask_int)
# Training
# AR Decoder
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
x_len = x_lens.max()
y_len = y_lens.max()
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
ar_xy_padding_mask = xy_padding_mask
x_attn_mask = F.pad(
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
diagonal=1,
),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
bsz, src_len = x.shape[0], x_len + y_len
_xy_padding_mask = (
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.num_head, -1, -1)
.reshape(bsz * self.num_head, 1, src_len)
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
# x 和完整的 y 一次性输入模型
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask,
)
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
# loss
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
loss = F.cross_entropy(logits, targets, reduction="sum")
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
return loss, acc
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
def infer(
self,
x,
x_lens,
prompts,
bert_feature,
top_k: int = -100,
early_stop_num: int = -1,
temperature: float = 1.0,
):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
# AR Decoder
y = prompts
prefix_len = y.shape[1]
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
for _ in tqdm(range(1500)):
y_emb = self.ar_audio_embedding(y)
y_pos = self.ar_audio_position(y_emb)
# x 和逐渐增长的 y 一起输入给模型
xy_pos = torch.concat([x, y_pos], dim=1)
y_len = y.shape[1]
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
xy_dec, _ = self.h(
(xy_pos, None),
mask=xy_attn_mask,
)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
stop = True
if stop:
if prompts.shape[1] == y.shape[1]:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
# print(samples.shape)#[1,1]#第一个1是bs
# import os
# os._exit(2333)
y = torch.concat([y, samples], dim=1)
return y
def pad_y_eos(self, y, y_mask_int, eos_id):
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(y_mask_int, (0, 1), value=1)
# 错位
return targets[:, :-1], targets[:, 1:]
def infer_panel_batch_infer(
self,
x: List[torch.LongTensor], #####全部文本token
x_lens: torch.LongTensor,
prompts: torch.LongTensor, ####参考音频token
bert_feature: List[torch.LongTensor],
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs,
):
if prompts is None:
print("Warning: Prompt free is not supported batch_infer! switch to naive_infer")
return self.infer_panel_naive_batched(
x,
x_lens,
prompts,
bert_feature,
top_k=top_k,
top_p=top_p,
early_stop_num=early_stop_num,
temperature=temperature,
**kwargs,
)
max_len = kwargs.get("max_len", x_lens.max())
x_list = []
for x_item, bert_item in zip(x, bert_feature):
# max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
x_item = self.ar_text_embedding(x_item.unsqueeze(0))
x_item = x_item + self.bert_proj(bert_item.transpose(0, 1).unsqueeze(0))
x_item = self.ar_text_position(x_item).squeeze(0)
# x_item = F.pad(x_item,(0,0,0,max_len-x_item.shape[0]),value=0) if x_item.shape[0]<max_len else x_item ### padding right
x_item = (
F.pad(x_item, (0, 0, max_len - x_item.shape[0], 0), value=0) if x_item.shape[0] < max_len else x_item
) ### padding left
x_list.append(x_item)
x: torch.Tensor = torch.stack(x_list, dim=0)
# AR Decoder
y = prompts
x_len = x.shape[1]
stop = False
k_cache = None
v_cache = None
################### first step ##########################
assert y is not None, "Error: Prompt free is not supported batch_infer!"
ref_free = False
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_lens = torch.LongTensor([y_emb.shape[1]] * y_emb.shape[0]).to(x.device)
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
##### create mask #####
bsz = x.shape[0]
src_len = x_len + y_len
y_paddind_mask = make_pad_mask_left(y_lens, y_len)
x_paddind_mask = make_pad_mask_left(x_lens, max_len)
# (bsz, x_len + y_len)
padding_mask = torch.concat([x_paddind_mask, y_paddind_mask], dim=1)
x_mask = F.pad(
torch.zeros(x_len, x_len, dtype=torch.bool, device=x.device),
(0, y_len),
value=True,
)
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1),
(x_len, 0),
value=False,
)
causal_mask = torch.concat([x_mask, y_mask], dim=0).view(1, src_len, src_len).repeat(bsz, 1, 1).to(x.device)
# padding_mask = padding_mask.unsqueeze(1) * padding_mask.unsqueeze(2) ### [b, x+y, x+y]
### 上面是错误的,会导致padding的token被"看见"
# 正确的padding_mask应该是:
# | pad_len | x_len | y_len |
# [[PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
padding_mask = padding_mask.view(bsz, 1, src_len).repeat(1, src_len, 1)
attn_mask: torch.Tensor = causal_mask.logical_or(padding_mask)
attn_mask = attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1).bool()
# 正确的attn_mask应该是这样的:
# | pad_len | x_len | y_len |
# [[PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
# [PAD, PAD, PAD, 1, 2, 3, 4, EOS, EOS],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, EOS],
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
###### decode #####
y_list = [None] * y.shape[0]
batch_idx_map = list(range(y.shape[0]))
idx_list = [None] * y.shape[0]
for idx in tqdm(range(1500)):
if idx == 0:
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, attn_mask, None)
else:
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache, attn_mask)
logits = self.ar_predict_layer(xy_dec[:, -1])
if idx == 0:
attn_mask = F.pad(attn_mask[:, :, -1].unsqueeze(-2), (0, 1), value=False)
logits = logits[:, :-1]
else:
attn_mask = F.pad(attn_mask, (0, 1), value=False)
samples = sample(
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
####### 移除batch中已经生成完毕的序列,进一步优化计算量
tokens = torch.argmax(logits, dim=-1)
reserved_idx_of_batch_for_y = None
if (self.EOS in samples[:, 0]) or (self.EOS in tokens): ###如果生成到EOS,则停止
l1 = samples[:, 0] == self.EOS
l2 = tokens == self.EOS
l = l1.logical_or(l2)
removed_idx_of_batch_for_y = torch.where(l == True)[0].tolist()
reserved_idx_of_batch_for_y = torch.where(l == False)[0]
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
for i in removed_idx_of_batch_for_y:
batch_index = batch_idx_map[i]
idx_list[batch_index] = idx
y_list[batch_index] = y[i, :-1]
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
# 只保留batch中未生成完毕的序列
if reserved_idx_of_batch_for_y is not None:
# index = torch.LongTensor(batch_idx_map).to(y.device)
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
attn_mask = torch.index_select(attn_mask, dim=0, index=reserved_idx_of_batch_for_y)
if k_cache is not None:
for i in range(len(k_cache)):
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx == 1499:
print("use early stop num:", early_stop_num)
stop = True
for i, batch_index in enumerate(batch_idx_map):
batch_index = batch_idx_map[i]
idx_list[batch_index] = idx
y_list[batch_index] = y[i, :-1]
if None not in idx_list:
stop = True
if stop:
if y.shape[1] == 0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
####################### update next step ###################################
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
:, y_len + idx
].to(dtype=y_emb.dtype, device=y_emb.device)
if None in idx_list:
for i in range(x.shape[0]):
if idx_list[i] is None:
idx_list[i] = 1500 - 1 ###如果没有生成到EOS,就用最大长度代替
if ref_free:
return y_list, [0] * x.shape[0]
# print(idx_list)
return y_list, idx_list
def infer_panel_naive_batched(
self,
x: List[torch.LongTensor], #####全部文本token
x_lens: torch.LongTensor,
prompts: torch.LongTensor, ####参考音频token
bert_feature: List[torch.LongTensor],
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs,
):
y_list = []
idx_list = []
for i in range(len(x)):
y, idx = self.infer_panel_naive(
x[i].unsqueeze(0),
x_lens[i],
prompts[i].unsqueeze(0) if prompts is not None else None,
bert_feature[i].unsqueeze(0),
top_k,
top_p,
early_stop_num,
temperature,
repetition_penalty,
**kwargs,
)
y_list.append(y[0])
idx_list.append(idx)
return y_list, idx_list
def infer_panel_naive(
self,
x: torch.LongTensor, #####全部文本token
x_lens: torch.LongTensor,
prompts: torch.LongTensor, ####参考音频token
bert_feature: torch.LongTensor,
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs,
):
x = self.ar_text_embedding(x)
x = x + self.bert_proj(bert_feature.transpose(1, 2))
x = self.ar_text_position(x)
# AR Decoder
y = prompts
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
stop = False
# print(1111111,self.num_layers)
k_cache = None
v_cache = None
################### first step ##########################
if y is not None:
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
ref_free = False
else:
y_emb = None
y_len = 0
prefix_len = 0
y_pos = None
xy_pos = x
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
ref_free = True
bsz = x.shape[0]
src_len = x_len + y_len
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
value=True,
)
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = (
torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
.unsqueeze(0)
.expand(bsz * self.num_head, -1, -1)
.view(bsz, self.num_head, src_len, src_len)
.to(device=x.device, dtype=torch.bool)
)
for idx in tqdm(range(1500)):
if xy_attn_mask is not None:
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
else:
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
if idx == 0:
xy_attn_mask = None
if idx < 11: ###至少预测出10个token不然不给停止(0.4s)
logits = logits[:, :-1]
samples = sample(
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
)[0]
y = torch.concat([y, samples], dim=1)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
print("use early stop num:", early_stop_num)
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
if y.shape[1] == 0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
print("bad zero prediction")
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
break
####################### update next step ###################################
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
:, y_len + idx
].to(dtype=y_emb.dtype, device=y_emb.device)
if ref_free:
return y[:, :-1], 0
return y[:, :-1], idx
def infer_panel(
self,
x: torch.LongTensor, #####全部文本token
x_lens: torch.LongTensor,
prompts: torch.LongTensor, ####参考音频token
bert_feature: torch.LongTensor,
top_k: int = -100,
top_p: int = 100,
early_stop_num: int = -1,
temperature: float = 1.0,
repetition_penalty: float = 1.35,
**kwargs,
):
return self.infer_panel_naive(
x, x_lens, prompts, bert_feature, top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs
)