Spaces:
Runtime error
Runtime error
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import print_function | |
| import argparse | |
| import datetime | |
| import logging | |
| logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
| from copy import deepcopy | |
| import os | |
| import torch | |
| import torch.distributed as dist | |
| import deepspeed | |
| from hyperpyyaml import load_hyperpyyaml | |
| from torch.distributed.elastic.multiprocessing.errors import record | |
| from cosyvoice.utils.executor import Executor | |
| from cosyvoice.utils.train_utils import ( | |
| init_distributed, | |
| init_dataset_and_dataloader, | |
| init_optimizer_and_scheduler, | |
| init_summarywriter, save_model, | |
| wrap_cuda_model, check_modify_and_save_config) | |
| def get_args(): | |
| parser = argparse.ArgumentParser(description='training your network') | |
| parser.add_argument('--train_engine', | |
| default='torch_ddp', | |
| choices=['torch_ddp', 'deepspeed'], | |
| help='Engine for paralleled training') | |
| parser.add_argument('--model', required=True, help='model which will be trained') | |
| parser.add_argument('--config', required=True, help='config file') | |
| parser.add_argument('--train_data', required=True, help='train data file') | |
| parser.add_argument('--cv_data', required=True, help='cv data file') | |
| parser.add_argument('--checkpoint', help='checkpoint model') | |
| parser.add_argument('--model_dir', required=True, help='save model dir') | |
| parser.add_argument('--tensorboard_dir', | |
| default='tensorboard', | |
| help='tensorboard log dir') | |
| parser.add_argument('--ddp.dist_backend', | |
| dest='dist_backend', | |
| default='nccl', | |
| choices=['nccl', 'gloo'], | |
| help='distributed backend') | |
| parser.add_argument('--num_workers', | |
| default=0, | |
| type=int, | |
| help='num of subprocess workers for reading') | |
| parser.add_argument('--prefetch', | |
| default=100, | |
| type=int, | |
| help='prefetch number') | |
| parser.add_argument('--pin_memory', | |
| action='store_true', | |
| default=False, | |
| help='Use pinned memory buffers used for reading') | |
| parser.add_argument('--use_amp', | |
| action='store_true', | |
| default=False, | |
| help='Use automatic mixed precision training') | |
| parser.add_argument('--deepspeed.save_states', | |
| dest='save_states', | |
| default='model_only', | |
| choices=['model_only', 'model+optimizer'], | |
| help='save model/optimizer states') | |
| parser.add_argument('--timeout', | |
| default=60, | |
| type=int, | |
| help='timeout (in seconds) of cosyvoice_join.') | |
| parser = deepspeed.add_config_arguments(parser) | |
| args = parser.parse_args() | |
| return args | |
| def main(): | |
| args = get_args() | |
| logging.basicConfig(level=logging.DEBUG, | |
| format='%(asctime)s %(levelname)s %(message)s') | |
| # gan train has some special initialization logic | |
| gan = True if args.model == 'hifigan' else False | |
| override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model} | |
| if gan is True: | |
| override_dict.pop('hift') | |
| with open(args.config, 'r') as f: | |
| configs = load_hyperpyyaml(f, overrides=override_dict) | |
| if gan is True: | |
| configs['train_conf'] = configs['train_conf_gan'] | |
| configs['train_conf'].update(vars(args)) | |
| # Init env for ddp | |
| init_distributed(args) | |
| # Get dataset & dataloader | |
| train_dataset, cv_dataset, train_data_loader, cv_data_loader = \ | |
| init_dataset_and_dataloader(args, configs, gan) | |
| # Do some sanity checks and save config to arsg.model_dir | |
| configs = check_modify_and_save_config(args, configs) | |
| # Tensorboard summary | |
| writer = init_summarywriter(args) | |
| # load checkpoint | |
| model = configs[args.model] | |
| start_step, start_epoch = 0, -1 | |
| if args.checkpoint is not None: | |
| if os.path.exists(args.checkpoint): | |
| state_dict = torch.load(args.checkpoint, map_location='cpu') | |
| model.load_state_dict(state_dict, strict=False) | |
| if 'step' in state_dict: | |
| start_step = state_dict['step'] | |
| if 'epoch' in state_dict: | |
| start_epoch = state_dict['epoch'] | |
| else: | |
| logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint)) | |
| # Dispatch model from cpu to gpu | |
| model = wrap_cuda_model(args, model) | |
| # Get optimizer & scheduler | |
| model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan) | |
| scheduler.set_step(start_step) | |
| if scheduler_d is not None: | |
| scheduler_d.set_step(start_step) | |
| # Save init checkpoints | |
| info_dict = deepcopy(configs['train_conf']) | |
| info_dict['step'] = start_step | |
| info_dict['epoch'] = start_epoch | |
| save_model(model, 'init', info_dict) | |
| # Get executor | |
| executor = Executor(gan=gan) | |
| executor.step = start_step | |
| # Init scaler, used for pytorch amp mixed precision training | |
| scaler = torch.cuda.amp.GradScaler() if args.use_amp else None | |
| print('start step {} start epoch {}'.format(start_step, start_epoch)) | |
| # Start training loop | |
| for epoch in range(start_epoch + 1, info_dict['max_epoch']): | |
| executor.epoch = epoch | |
| train_dataset.set_epoch(epoch) | |
| dist.barrier() | |
| group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout)) | |
| if gan is True: | |
| executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader, | |
| writer, info_dict, scaler, group_join) | |
| else: | |
| executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join) | |
| dist.destroy_process_group(group_join) | |
| if __name__ == '__main__': | |
| main() | |