Spaces:
Paused
Paused
import time | |
import pytest | |
from tests.utils import wrap_test_forked | |
from src.enums import source_prefix, source_postfix | |
from src.prompter import generate_prompt | |
example_data_point0 = dict(instruction="Summarize", | |
input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.", | |
output="Ducks eat and swim at the lake.") | |
example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?", | |
output="Einstein.") | |
example_data_point2 = dict(input="Who is smarter, Einstein or Newton?", | |
output="Einstein.") | |
example_data_points = [example_data_point0, example_data_point1, example_data_point2] | |
def test_train_prompt(prompt_type='instruct', data_point=0): | |
example_data_point = example_data_points[data_point] | |
return generate_prompt(example_data_point, prompt_type, '', False, False, False) | |
def test_test_prompt(prompt_type='instruct', data_point=0): | |
example_data_point = example_data_points[data_point] | |
example_data_point.pop('output', None) | |
return generate_prompt(example_data_point, prompt_type, '', False, False, False) | |
def test_test_prompt2(prompt_type='human_bot', data_point=0): | |
example_data_point = example_data_points[data_point] | |
example_data_point.pop('output', None) | |
res = generate_prompt(example_data_point, prompt_type, '', False, False, False) | |
print(res, flush=True) | |
return res | |
prompt_fastchat = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT: I'm good</s>USER: Go to the market? ASSISTANT:""" | |
prompt_humanbot = """<human>: Hello!\n<bot>: Hi!\n<human>: How are you?\n<bot>: I'm good\n<human>: Go to the market?\n<bot>:""" | |
prompt_prompt_answer = "<|prompt|>Hello!<|endoftext|><|answer|>Hi!<|endoftext|><|prompt|>How are you?<|endoftext|><|answer|>I'm good<|endoftext|><|prompt|>Go to the market?<|endoftext|><|answer|>" | |
prompt_prompt_answer_openllama = "<|prompt|>Hello!</s><|answer|>Hi!</s><|prompt|>How are you?</s><|answer|>I'm good</s><|prompt|>Go to the market?</s><|answer|>" | |
prompt_mpt_instruct = """Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction | |
Hello! | |
### Response | |
Hi! | |
### Instruction | |
How are you? | |
### Response | |
I'm good | |
### Instruction | |
Go to the market? | |
### Response | |
""" | |
prompt_mpt_chat = """<|im_start|>system | |
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers. | |
<|im_end|><|im_start|>user | |
Hello!<|im_end|><|im_start|>assistant | |
Hi!<|im_end|><|im_start|>user | |
How are you?<|im_end|><|im_start|>assistant | |
I'm good<|im_end|><|im_start|>user | |
Go to the market?<|im_end|><|im_start|>assistant | |
""" | |
prompt_falcon = """User: Hello! | |
Assistant: Hi! | |
User: How are you? | |
Assistant: I'm good | |
User: Go to the market? | |
Assistant:""" | |
prompt_llama2 = """<s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]""" | |
prompt_llama2_sys = """<s>[INST] <<SYS>> | |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. | |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. | |
<</SYS>> | |
Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]""" | |
prompt_llama2_pig = """<s>[INST] Who are you? [/INST] I am a big pig who loves to tell kid stories </s><s>[INST] Hello! [/INST] Hi! </s><s>[INST] How are you? [/INST] I'm good </s><s>[INST] Go to the market? [/INST]""" | |
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space. | |
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py | |
prompt_beluga = """### User: | |
Hello! | |
### Assistant: | |
Hi! | |
### User: | |
How are you? | |
### Assistant: | |
I'm good | |
### User: | |
Go to the market? | |
### Assistant: | |
""" | |
prompt_beluga_sys = """### System: | |
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal. | |
### User: | |
Hello! | |
### Assistant: | |
Hi! | |
### User: | |
How are you? | |
### Assistant: | |
I'm good | |
### User: | |
Go to the market? | |
### Assistant: | |
""" | |
prompt_falcon180 = """User: Hello! | |
Falcon: Hi! | |
User: How are you? | |
Falcon: I'm good | |
User: Go to the market? | |
Falcon:""" | |
prompt_falcon180_sys = """System: You are an intelligent and helpful assistant. | |
User: Hello! | |
Falcon: Hi! | |
User: How are you? | |
Falcon: I'm good | |
User: Go to the market? | |
Falcon:""" | |
def test_prompt_with_context(prompt_type, system_prompt, chat_conversation, expected): | |
prompt_dict = None # not used unless prompt_type='custom' | |
langchain_mode = 'Disabled' | |
add_chat_history_to_context = True | |
chat = True | |
model_max_length = 2048 | |
memory_restriction_level = 0 | |
keep_sources_in_context = False | |
iinput = '' | |
stream_output = False | |
debug = False | |
from src.prompter import Prompter | |
from src.gen import history_to_context | |
t0 = time.time() | |
history = [["Hello!", "Hi!"], | |
["How are you?", "I'm good"], | |
["Go to the market?", None] | |
] | |
print("duration1: %s %s" % (prompt_type, time.time() - t0), flush=True) | |
t0 = time.time() | |
context = history_to_context(history, | |
langchain_mode=langchain_mode, | |
add_chat_history_to_context=add_chat_history_to_context, | |
prompt_type=prompt_type, | |
prompt_dict=prompt_dict, | |
chat=chat, | |
model_max_length=model_max_length, | |
memory_restriction_level=memory_restriction_level, | |
keep_sources_in_context=keep_sources_in_context, | |
system_prompt=system_prompt, | |
chat_conversation=chat_conversation) | |
print("duration2: %s %s" % (prompt_type, time.time() - t0), flush=True) | |
t0 = time.time() | |
instruction = history[-1][0] | |
# get prompt | |
prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output, | |
system_prompt=system_prompt) | |
# for instruction-tuned models, expect this: | |
assert prompter.PreResponse | |
assert prompter.PreInstruct | |
assert prompter.botstr | |
assert prompter.humanstr | |
print("duration3: %s %s" % (prompt_type, time.time() - t0), flush=True) | |
t0 = time.time() | |
data_point = dict(context=context, instruction=instruction, input=iinput) | |
prompt = prompter.generate_prompt(data_point) | |
print(prompt) | |
print("duration4: %s %s" % (prompt_type, time.time() - t0), flush=True) | |
assert prompt == expected | |
assert prompt.find(source_prefix) == -1 | |
prompt_fastchat1 = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Go to the market? ASSISTANT:""" | |
prompt_humanbot1 = """<human>: Go to the market?\n<bot>:""" | |
prompt_prompt_answer1 = "<|prompt|>Go to the market?<|endoftext|><|answer|>" | |
prompt_prompt_answer_openllama1 = "<|prompt|>Go to the market?</s><|answer|>" | |
prompt_mpt_instruct1 = """Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction | |
Go to the market? | |
### Response | |
""" | |
prompt_mpt_chat1 = """<|im_start|>system | |
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers. | |
<|im_end|><|im_start|>user | |
Go to the market?<|im_end|><|im_start|>assistant | |
""" | |
prompt_falcon1 = """User: Go to the market? | |
Assistant:""" | |
prompt_llama21 = """<s>[INST] Go to the market? [/INST]""" | |
prompt_llama21_sys = """<s>[INST] <<SYS>> | |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. | |
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. | |
<</SYS>> | |
Go to the market? [/INST]""" | |
# Fastsys doesn't put space above before final [/INST], I think wrong, since with context version has space. | |
# and llama2 code has space before it always: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/generation.py | |
prompt_beluga1_sys = """### System: | |
You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal. | |
### User: | |
Go to the market? | |
### Assistant: | |
""" | |
prompt_beluga1 = """### User: | |
Go to the market? | |
### Assistant: | |
""" | |
prompt_falcon1801 = """User: Go to the market? | |
Falcon:""" | |
prompt_falcon1801_sys = """System: You are an intelligent and helpful assistant. | |
User: Go to the market? | |
Falcon:""" | |
def test_prompt_with_no_context(prompt_type, system_prompt, expected): | |
prompt_dict = None # not used unless prompt_type='custom' | |
chat = True | |
iinput = '' | |
stream_output = False | |
debug = False | |
from src.prompter import Prompter | |
context = '' | |
instruction = "Go to the market?" | |
# get prompt | |
prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output, | |
system_prompt=system_prompt) | |
# for instruction-tuned models, expect this: | |
assert prompter.PreResponse | |
assert prompter.PreInstruct | |
assert prompter.botstr | |
assert prompter.humanstr | |
data_point = dict(context=context, instruction=instruction, input=iinput) | |
prompt = prompter.generate_prompt(data_point) | |
print(prompt) | |
assert prompt == expected | |
assert prompt.find(source_prefix) == -1 | |
def test_source(): | |
prompt = "Who are you?%s\nFOO\n%s" % (source_prefix, source_postfix) | |
assert prompt.find(source_prefix) >= 0 | |
# https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/main/app.py | |
def falcon180_format_prompt(message, history, system_prompt): | |
prompt = "" | |
if system_prompt: | |
prompt += f"System: {system_prompt}\n" | |
for user_prompt, bot_response in history: | |
prompt += f"User: {user_prompt}\n" | |
prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " | |
prompt += f"""User: {message} | |
Falcon:""" | |
return prompt | |
def test_falcon180(): | |
prompt = "Who are you?" | |
for system_prompt in ['', "Talk like a Pixie."]: | |
history = [["Who are you?", "I am Falcon, a monster AI model."], | |
["What can you do?", "I can do well on leaderboard but not actually 1st."]] | |
formatted_prompt = falcon180_format_prompt(prompt, history, system_prompt) | |
print(formatted_prompt) | |