Spaces:
Paused
Paused
import os | |
import json | |
import shutil | |
import subprocess | |
import torch | |
from accelerate import infer_auto_device_map, dispatch_model | |
from accelerate.utils import get_balanced_memory | |
from peft import PeftModel | |
from transformers import PreTrainedModel | |
def do_export(): | |
BASE_MODEL = 'h2oai/h2ogpt-4096-llama2-13b-chat' | |
LORA_WEIGHTS = 'Llama-2-13b-chat-hf.h2oaiopenassistant_oasst1_h2ogpt_llama2_chat.1_epochs.b2aed9250804d815c258976c98ce968bacd88389.7' | |
OUTPUT_NAME = "h2ogpt-oasst1-4096-llama2-13b" | |
BASE_MODEL = 'meta-llama/Llama-2-7b-chat-hf' | |
LORA_WEIGHTS = 'Llama-2-7b-chat-hf.h2oaiopenassistant_oasst1_h2ogpt_llama2_chat.1_epochs.0c6b906f73b5639fd1d53c74fecbc9cf64f0f225.8' | |
OUTPUT_NAME = "h2ogpt-oasst1-4096-llama2-7b" | |
BASE_MODEL = 'meta-llama/Llama-2-70b-chat-hf' | |
LORA_WEIGHTS = 'Llama-2-70b-chat-hf.h2oaiopenassistant_oasst1_h2ogpt_llama2_chat.1_epochs.0c6b906f73b5639fd1d53c74fecbc9cf64f0f225.6' | |
OUTPUT_NAME = "h2ogpt-oasst1-4096-llama2-70b" | |
base_model = os.getenv('BASE_MODEL') | |
output = os.getenv('MODEL') | |
# for testing | |
if base_model and output: | |
BASE_MODEL = base_model | |
LORA_WEIGHTS = output + ".lora" | |
OUTPUT_NAME = output | |
llama_type = "llama" in BASE_MODEL | |
as_pytorch = False # False -> HF | |
from loaders import get_loaders | |
model_loader, tokenizer_loader, conditional_type = ( | |
get_loaders(model_name=BASE_MODEL, reward_type=False, llama_type=llama_type)) | |
tokenizer = tokenizer_loader.from_pretrained( | |
BASE_MODEL, | |
local_files_only=False, | |
resume_download=True, | |
) | |
tokenizer.save_pretrained(OUTPUT_NAME) | |
base_model = model_loader( | |
BASE_MODEL, | |
load_in_8bit=False, | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
device_map={"": "cpu"}, | |
) | |
print(base_model) | |
if llama_type: | |
layers = base_model.model.layers | |
first_weight = layers[0].self_attn.q_proj.weight | |
else: | |
if any([x in BASE_MODEL.lower() for x in ["pythia", "h2ogpt", "gpt-neox"]]): | |
layers = base_model.gpt_neox.base_model.layers | |
first_weight = layers[0].attention.query_key_value.weight | |
elif any([x in BASE_MODEL.lower() for x in ["falcon"]]): | |
first_weight = base_model.transformer.h._modules['0'].self_attention.query_key_value.weight | |
else: | |
layers = base_model.transformer.base_model.h | |
first_weight = layers[0].attn.q_proj.weight | |
first_weight_old = first_weight.clone() | |
lora_model = PeftModel.from_pretrained( | |
base_model, | |
LORA_WEIGHTS, | |
device_map={"": "cpu"}, | |
torch_dtype=torch.float16, | |
) | |
assert torch.allclose(first_weight_old, first_weight) | |
# merge weights TODO: include all lora_target_modules, not just default ones | |
if llama_type: | |
merged_model = lora_model.merge_and_unload() | |
# for layer in lora_model.base_model.model.model.layers: | |
# layer.self_attn.q_proj.merge_weights = True | |
# layer.self_attn.k_proj.merge_weights = True | |
# layer.self_attn.v_proj.merge_weights = True | |
# layer.self_attn.o_proj.merge_weights = True | |
else: | |
if any([x in BASE_MODEL.lower() for x in ["pythia", "gpt-neox"]]): | |
for layer in lora_model.base_model.gpt_neox.base_model.layers: | |
layer.attention.query_key_value.merge_weights = True | |
merged_model = lora_model | |
else: | |
merged_model = lora_model.merge_and_unload() | |
# for layer in lora_model.base_model.transformer.base_model.h: | |
# layer.attn.q_proj.merge_weights = True | |
# layer.attn.v_proj.merge_weights = True | |
# max_memory = get_balanced_memory(merged_model) | |
# device_map = infer_auto_device_map(merged_model, max_memory=max_memory) | |
# merged_model = dispatch_model( | |
# merged_model, | |
# device_map=device_map, | |
# ) | |
merged_model.eval() | |
print(merged_model) | |
# did we do anything? | |
assert not torch.allclose(first_weight_old, first_weight) | |
merged_model_sd = merged_model.state_dict() | |
if as_pytorch: | |
# FIXME - might not be generic enough still | |
params = { | |
"dim": base_model.config.hidden_size, | |
"n_heads": base_model.config.num_attention_heads, | |
"n_layers": base_model.config.num_hidden_layers, | |
"norm_eps": base_model.config.layer_norm_eps, | |
"vocab_size": base_model.config.vocab_size, | |
} | |
n_layers = params["n_layers"] | |
n_heads = params["n_heads"] | |
dim = params["dim"] | |
dims_per_head = dim // n_heads | |
base = 10000.0 | |
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) | |
def permute(w): | |
return ( | |
w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) | |
) | |
def unpermute(w): | |
return ( | |
w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim) | |
) | |
def translate_state_dict_key(k): | |
if "gpt-neoxt" in BASE_MODEL.lower(): | |
k = k.replace("gpt_neox.model.", "") | |
else: | |
k = k.replace("base_model.model.", "") | |
if k == "model.embed_tokens.weight": | |
return "tok_embeddings.weight" | |
elif k == "model.norm.weight": | |
return "norm.weight" | |
elif k == "lm_head.weight": | |
return "output.weight" | |
elif k.startswith("model.layers."): | |
layer = k.split(".")[2] | |
if k.endswith(".self_attn.q_proj.weight"): | |
return f"layers.{layer}.attention.wq.weight" | |
elif k.endswith(".self_attn.k_proj.weight"): | |
return f"layers.{layer}.attention.wk.weight" | |
elif k.endswith(".self_attn.v_proj.weight"): | |
return f"layers.{layer}.attention.wv.weight" | |
elif k.endswith(".self_attn.o_proj.weight"): | |
return f"layers.{layer}.attention.wo.weight" | |
elif k.endswith(".mlp.gate_proj.weight"): | |
return f"layers.{layer}.feed_forward.w1.weight" | |
elif k.endswith(".mlp.down_proj.weight"): | |
return f"layers.{layer}.feed_forward.w2.weight" | |
elif k.endswith(".mlp.up_proj.weight"): | |
return f"layers.{layer}.feed_forward.w3.weight" | |
elif k.endswith(".input_layernorm.weight"): | |
return f"layers.{layer}.attention_norm.weight" | |
elif k.endswith(".post_attention_layernorm.weight"): | |
return f"layers.{layer}.ffn_norm.weight" | |
elif k.endswith("rotary_emb.inv_freq") or "lora" in k: | |
return None | |
else: | |
print(layer, k) | |
raise NotImplementedError | |
else: | |
print(k) | |
raise NotImplementedError | |
new_state_dict = {} | |
for k, v in merged_model_sd.items(): | |
new_k = translate_state_dict_key(k) | |
if new_k is not None: | |
if "wq" in new_k or "wk" in new_k: | |
new_state_dict[new_k] = unpermute(v) | |
else: | |
new_state_dict[new_k] = v | |
os.makedirs("./ckpt", exist_ok=True) | |
torch.save(new_state_dict, "./ckpt/consolidated.00.pth") | |
with open("./ckpt/params.json", "w") as f: | |
json.dump(params, f) | |
else: | |
# deloreanized_sd = { | |
# k.replace("base_model.model.", ""): v | |
# for k, v in merged_model_sd.items() | |
# if "lora" not in k | |
# } | |
merged_model.config.custom_pipelines = { | |
"text-generation": { | |
"impl": "h2oai_pipeline.H2OTextGenerationPipeline", | |
"pt": "AutoModelForCausalLM" | |
} | |
} | |
PreTrainedModel.save_pretrained( | |
merged_model, | |
OUTPUT_NAME, | |
# state_dict=deloreanized_sd, | |
# max_shard_size="5GB", | |
) | |
do_copy(OUTPUT_NAME) | |
test_copy() | |
def do_copy(OUTPUT_NAME): | |
dest_file = os.path.join(OUTPUT_NAME, "h2oai_pipeline.py") | |
shutil.copyfile("src/h2oai_pipeline.py", dest_file) | |
os.system("""sed -i 's/from enums.*//g' %s""" % dest_file) | |
os.system("""sed -i 's/from stopping.*//g' %s""" % dest_file) | |
os.system("""sed -i 's/from prompter.*//g' %s""" % dest_file) | |
os.system("""cat %s|grep -v "from enums import PromptType" >> %s""" % ('src/enums.py', dest_file)) | |
os.system("""cat %s|grep -v "from enums import PromptType" >> %s""" % ('src/prompter.py', dest_file)) | |
os.system("""cat %s|grep -v "from enums import PromptType" >> %s""" % ('src/stopping.py', dest_file)) | |
TEST_OUTPUT_NAME = "test_output" | |
def test_copy(): | |
if os.path.isdir(TEST_OUTPUT_NAME): | |
shutil.rmtree(TEST_OUTPUT_NAME) | |
os.makedirs(TEST_OUTPUT_NAME, exist_ok=False) | |
do_copy(TEST_OUTPUT_NAME) | |
shutil.copy('src/export_hf_checkpoint.py', TEST_OUTPUT_NAME) | |
os.environ['DO_COPY_TEST'] = '1' | |
os.chdir(TEST_OUTPUT_NAME) | |
output = subprocess.check_output(['python', 'export_hf_checkpoint.py']) | |
print(output) | |
def inner_test_copy(): | |
""" | |
pytest -s -v export_hf_checkpoint.py::test_copy | |
:return: | |
""" | |
# test imports | |
# below supposed to look bad in pycharm, don't fix! | |
from h2oai_pipeline import get_stopping, get_prompt, H2OTextGenerationPipeline | |
assert get_stopping | |
assert get_prompt | |
assert H2OTextGenerationPipeline | |
if __name__ == '__main__': | |
if os.getenv('DO_COPY_TEST'): | |
inner_test_copy() | |
else: | |
do_export() | |
# uncomment for raw isolated test, but test is done every time for each export now | |
# test_copy() | |