Spaces:
Paused
Paused
import pytest | |
from tests.utils import wrap_test_forked | |
from src.utils import set_seed | |
def test_export_copy(): | |
from src.export_hf_checkpoint import test_copy | |
test_copy() | |
from test_output.h2oai_pipeline import H2OTextGenerationPipeline, PromptType, DocumentSubset, LangChainMode, \ | |
prompt_type_to_model_name, get_prompt, generate_prompt, inject_chatsep, Prompter | |
assert prompt_type_to_model_name is not None | |
assert get_prompt is not None | |
assert generate_prompt is not None | |
assert inject_chatsep is not None | |
prompt_type = 'human_bot' | |
prompt_dict = {} | |
model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b' | |
load_in_8bit = True | |
import torch | |
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0 | |
device = 'cpu' if n_gpus == 0 else 'cuda' | |
device_map = {"": 0} if device == 'cuda' else "auto" | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map=device_map, | |
load_in_8bit=load_in_8bit) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") | |
pipe = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type=prompt_type) | |
assert pipe is not None | |
prompt_types = [x.name for x in list(PromptType)] | |
assert 'human_bot' in prompt_types and len(prompt_types) >= 20 | |
subset_types = [x.name for x in list(DocumentSubset)] | |
assert 'Relevant' in subset_types and len(prompt_types) >= 4 | |
langchain_mode_types = [x.name for x in list(LangChainMode)] | |
langchain_mode_types_v = [x.value for x in list(LangChainMode)] | |
assert 'UserData' in langchain_mode_types_v and "USER_DATA" in langchain_mode_types and len(langchain_mode_types) >= 8 | |
prompter = Prompter(prompt_type, prompt_dict) | |
assert prompter is not None | |
def test_pipeline1(): | |
SEED = 1236 | |
set_seed(SEED) | |
import torch | |
from src.h2oai_pipeline import H2OTextGenerationPipeline | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import textwrap as tr | |
model_name = "h2oai/h2ogpt-oasst1-512-12b" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") | |
# 8-bit will use much less memory, so set to True if | |
# e.g. with 512-12b load_in_8bit=True required for 24GB GPU | |
# if have 48GB GPU can do load_in_8bit=False for more accurate results | |
load_in_8bit = True | |
# device_map = 'auto' might work in some cases to spread model across GPU-CPU, but it's not supported | |
device_map = {"": 0} | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, | |
device_map=device_map, load_in_8bit=load_in_8bit) | |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type='human_bot', | |
base_model=model_name) | |
# generate | |
outputs = generate_text("Why is drinking water so healthy?", return_full_text=True, max_new_tokens=400) | |
for output in outputs: | |
print(tr.fill(output['generated_text'], width=40)) | |
res1 = 'Drinking water is healthy because it is essential for life' in outputs[0]['generated_text'] | |
res2 = 'Drinking water is healthy because it helps your body' in outputs[0]['generated_text'] | |
assert res1 or res2 | |
def test_pipeline2(): | |
SEED = 1236 | |
set_seed(SEED) | |
import torch | |
from src.h2oai_pipeline import H2OTextGenerationPipeline | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "h2oai/h2ogpt-oig-oasst1-512-6_9b" | |
load_in_8bit = False | |
device_map = {"": 0} | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map=device_map, | |
load_in_8bit=load_in_8bit) | |
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type='human_bot', | |
base_model=model_name) | |
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) | |
print(res[0]["generated_text"]) | |
assert 'Drinking water is so healthy because it is a natural source of hydration' in res[0]['generated_text'] | |
def test_pipeline3(): | |
SEED = 1236 | |
set_seed(SEED) | |
import torch | |
from transformers import pipeline | |
model_kwargs = dict(load_in_8bit=False) | |
generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-512-6_9b", torch_dtype=torch.bfloat16, | |
trust_remote_code=True, device_map="auto", prompt_type='human_bot', | |
model_kwargs=model_kwargs) | |
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) | |
print(res[0]["generated_text"]) | |
assert 'Drinking water is so healthy because it is a natural source of hydration' in res[0]['generated_text'] | |