Spaces:
Runtime error
Runtime error
Upload synthesizer/audio.py with huggingface_hub
Browse files- synthesizer/audio.py +206 -0
synthesizer/audio.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import librosa.filters
|
3 |
+
import numpy as np
|
4 |
+
from scipy import signal
|
5 |
+
from scipy.io import wavfile
|
6 |
+
import soundfile as sf
|
7 |
+
|
8 |
+
|
9 |
+
def load_wav(path, sr):
|
10 |
+
return librosa.core.load(path, sr=sr)[0]
|
11 |
+
|
12 |
+
def save_wav(wav, path, sr):
|
13 |
+
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
14 |
+
#proposed by @dsmiller
|
15 |
+
wavfile.write(path, sr, wav.astype(np.int16))
|
16 |
+
|
17 |
+
def save_wavenet_wav(wav, path, sr):
|
18 |
+
sf.write(path, wav.astype(np.float32), sr)
|
19 |
+
|
20 |
+
def preemphasis(wav, k, preemphasize=True):
|
21 |
+
if preemphasize:
|
22 |
+
return signal.lfilter([1, -k], [1], wav)
|
23 |
+
return wav
|
24 |
+
|
25 |
+
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
26 |
+
if inv_preemphasize:
|
27 |
+
return signal.lfilter([1], [1, -k], wav)
|
28 |
+
return wav
|
29 |
+
|
30 |
+
#From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py
|
31 |
+
def start_and_end_indices(quantized, silence_threshold=2):
|
32 |
+
for start in range(quantized.size):
|
33 |
+
if abs(quantized[start] - 127) > silence_threshold:
|
34 |
+
break
|
35 |
+
for end in range(quantized.size - 1, 1, -1):
|
36 |
+
if abs(quantized[end] - 127) > silence_threshold:
|
37 |
+
break
|
38 |
+
|
39 |
+
assert abs(quantized[start] - 127) > silence_threshold
|
40 |
+
assert abs(quantized[end] - 127) > silence_threshold
|
41 |
+
|
42 |
+
return start, end
|
43 |
+
|
44 |
+
def get_hop_size(hparams):
|
45 |
+
hop_size = hparams.hop_size
|
46 |
+
if hop_size is None:
|
47 |
+
assert hparams.frame_shift_ms is not None
|
48 |
+
hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
|
49 |
+
return hop_size
|
50 |
+
|
51 |
+
def linearspectrogram(wav, hparams):
|
52 |
+
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
|
53 |
+
S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db
|
54 |
+
|
55 |
+
if hparams.signal_normalization:
|
56 |
+
return _normalize(S, hparams)
|
57 |
+
return S
|
58 |
+
|
59 |
+
def melspectrogram(wav, hparams):
|
60 |
+
D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams)
|
61 |
+
S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db
|
62 |
+
|
63 |
+
if hparams.signal_normalization:
|
64 |
+
return _normalize(S, hparams)
|
65 |
+
return S
|
66 |
+
|
67 |
+
def inv_linear_spectrogram(linear_spectrogram, hparams):
|
68 |
+
"""Converts linear spectrogram to waveform using librosa"""
|
69 |
+
if hparams.signal_normalization:
|
70 |
+
D = _denormalize(linear_spectrogram, hparams)
|
71 |
+
else:
|
72 |
+
D = linear_spectrogram
|
73 |
+
|
74 |
+
S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear
|
75 |
+
|
76 |
+
if hparams.use_lws:
|
77 |
+
processor = _lws_processor(hparams)
|
78 |
+
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
|
79 |
+
y = processor.istft(D).astype(np.float32)
|
80 |
+
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
|
81 |
+
else:
|
82 |
+
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
|
83 |
+
|
84 |
+
def inv_mel_spectrogram(mel_spectrogram, hparams):
|
85 |
+
"""Converts mel spectrogram to waveform using librosa"""
|
86 |
+
if hparams.signal_normalization:
|
87 |
+
D = _denormalize(mel_spectrogram, hparams)
|
88 |
+
else:
|
89 |
+
D = mel_spectrogram
|
90 |
+
|
91 |
+
S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear
|
92 |
+
|
93 |
+
if hparams.use_lws:
|
94 |
+
processor = _lws_processor(hparams)
|
95 |
+
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
|
96 |
+
y = processor.istft(D).astype(np.float32)
|
97 |
+
return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize)
|
98 |
+
else:
|
99 |
+
return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize)
|
100 |
+
|
101 |
+
def _lws_processor(hparams):
|
102 |
+
import lws
|
103 |
+
return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech")
|
104 |
+
|
105 |
+
def _griffin_lim(S, hparams):
|
106 |
+
"""librosa implementation of Griffin-Lim
|
107 |
+
Based on https://github.com/librosa/librosa/issues/434
|
108 |
+
"""
|
109 |
+
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
110 |
+
S_complex = np.abs(S).astype(np.complex)
|
111 |
+
y = _istft(S_complex * angles, hparams)
|
112 |
+
for i in range(hparams.griffin_lim_iters):
|
113 |
+
angles = np.exp(1j * np.angle(_stft(y, hparams)))
|
114 |
+
y = _istft(S_complex * angles, hparams)
|
115 |
+
return y
|
116 |
+
|
117 |
+
def _stft(y, hparams):
|
118 |
+
if hparams.use_lws:
|
119 |
+
return _lws_processor(hparams).stft(y).T
|
120 |
+
else:
|
121 |
+
return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
|
122 |
+
|
123 |
+
def _istft(y, hparams):
|
124 |
+
return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size)
|
125 |
+
|
126 |
+
##########################################################
|
127 |
+
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
128 |
+
def num_frames(length, fsize, fshift):
|
129 |
+
"""Compute number of time frames of spectrogram
|
130 |
+
"""
|
131 |
+
pad = (fsize - fshift)
|
132 |
+
if length % fshift == 0:
|
133 |
+
M = (length + pad * 2 - fsize) // fshift + 1
|
134 |
+
else:
|
135 |
+
M = (length + pad * 2 - fsize) // fshift + 2
|
136 |
+
return M
|
137 |
+
|
138 |
+
|
139 |
+
def pad_lr(x, fsize, fshift):
|
140 |
+
"""Compute left and right padding
|
141 |
+
"""
|
142 |
+
M = num_frames(len(x), fsize, fshift)
|
143 |
+
pad = (fsize - fshift)
|
144 |
+
T = len(x) + 2 * pad
|
145 |
+
r = (M - 1) * fshift + fsize - T
|
146 |
+
return pad, pad + r
|
147 |
+
##########################################################
|
148 |
+
#Librosa correct padding
|
149 |
+
def librosa_pad_lr(x, fsize, fshift):
|
150 |
+
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
151 |
+
|
152 |
+
# Conversions
|
153 |
+
_mel_basis = None
|
154 |
+
_inv_mel_basis = None
|
155 |
+
|
156 |
+
def _linear_to_mel(spectogram, hparams):
|
157 |
+
global _mel_basis
|
158 |
+
if _mel_basis is None:
|
159 |
+
_mel_basis = _build_mel_basis(hparams)
|
160 |
+
return np.dot(_mel_basis, spectogram)
|
161 |
+
|
162 |
+
def _mel_to_linear(mel_spectrogram, hparams):
|
163 |
+
global _inv_mel_basis
|
164 |
+
if _inv_mel_basis is None:
|
165 |
+
_inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
|
166 |
+
return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))
|
167 |
+
|
168 |
+
def _build_mel_basis(hparams):
|
169 |
+
assert hparams.fmax <= hparams.sample_rate // 2
|
170 |
+
return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels,
|
171 |
+
fmin=hparams.fmin, fmax=hparams.fmax)
|
172 |
+
|
173 |
+
def _amp_to_db(x, hparams):
|
174 |
+
min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
|
175 |
+
return 20 * np.log10(np.maximum(min_level, x))
|
176 |
+
|
177 |
+
def _db_to_amp(x):
|
178 |
+
return np.power(10.0, (x) * 0.05)
|
179 |
+
|
180 |
+
def _normalize(S, hparams):
|
181 |
+
if hparams.allow_clipping_in_normalization:
|
182 |
+
if hparams.symmetric_mels:
|
183 |
+
return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value,
|
184 |
+
-hparams.max_abs_value, hparams.max_abs_value)
|
185 |
+
else:
|
186 |
+
return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value)
|
187 |
+
|
188 |
+
assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
|
189 |
+
if hparams.symmetric_mels:
|
190 |
+
return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value
|
191 |
+
else:
|
192 |
+
return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db))
|
193 |
+
|
194 |
+
def _denormalize(D, hparams):
|
195 |
+
if hparams.allow_clipping_in_normalization:
|
196 |
+
if hparams.symmetric_mels:
|
197 |
+
return (((np.clip(D, -hparams.max_abs_value,
|
198 |
+
hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value))
|
199 |
+
+ hparams.min_level_db)
|
200 |
+
else:
|
201 |
+
return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
|
202 |
+
|
203 |
+
if hparams.symmetric_mels:
|
204 |
+
return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db)
|
205 |
+
else:
|
206 |
+
return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db)
|