Update app.py
Browse files
app.py
CHANGED
@@ -16,10 +16,12 @@ def yolo_inference(input_file):
|
|
16 |
results = model(img)
|
17 |
annotated_img = results[0].plot()
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
cv2.
|
22 |
-
|
|
|
|
|
23 |
|
24 |
elif input_file.endswith((".mp4", ".avi", ".mov")):
|
25 |
# Process as a video
|
@@ -30,7 +32,8 @@ def yolo_inference(input_file):
|
|
30 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
31 |
|
32 |
# Create a temporary output video path
|
33 |
-
|
|
|
34 |
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
|
35 |
|
36 |
while cap.isOpened():
|
@@ -41,11 +44,20 @@ def yolo_inference(input_file):
|
|
41 |
# Run YOLO on each frame
|
42 |
results = model(frame)
|
43 |
annotated_frame = results[0].plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
out.write(annotated_frame)
|
45 |
|
46 |
cap.release()
|
47 |
out.release()
|
48 |
-
|
|
|
|
|
49 |
|
50 |
else:
|
51 |
raise ValueError("Unsupported file format. Please upload an image or video.")
|
@@ -54,9 +66,9 @@ def yolo_inference(input_file):
|
|
54 |
interface = gr.Interface(
|
55 |
fn=yolo_inference,
|
56 |
inputs=gr.File(label="Upload an Image or Video"),
|
57 |
-
outputs=
|
58 |
title="YOLO Object Detection",
|
59 |
-
description="Upload an image or video for object detection
|
60 |
)
|
61 |
|
62 |
# Launch the app
|
|
|
16 |
results = model(img)
|
17 |
annotated_img = results[0].plot()
|
18 |
|
19 |
+
# Display the annotated image in a window
|
20 |
+
cv2.imshow("YOLO Detection", annotated_img)
|
21 |
+
cv2.waitKey(0)
|
22 |
+
cv2.destroyAllWindows()
|
23 |
+
|
24 |
+
return input_file # Return the original file for consistency (can be adjusted)
|
25 |
|
26 |
elif input_file.endswith((".mp4", ".avi", ".mov")):
|
27 |
# Process as a video
|
|
|
32 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
33 |
|
34 |
# Create a temporary output video path
|
35 |
+
temp_dir = tempfile.mkdtemp()
|
36 |
+
output_video_path = os.path.join(temp_dir, "output.mp4")
|
37 |
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
|
38 |
|
39 |
while cap.isOpened():
|
|
|
44 |
# Run YOLO on each frame
|
45 |
results = model(frame)
|
46 |
annotated_frame = results[0].plot()
|
47 |
+
|
48 |
+
# Display the annotated frame in a window
|
49 |
+
cv2.imshow("YOLO Detection", annotated_frame)
|
50 |
+
if cv2.waitKey(1) & 0xFF == ord('q'): # Press 'q' to quit early
|
51 |
+
break
|
52 |
+
|
53 |
+
# Save the annotated frame to the video
|
54 |
out.write(annotated_frame)
|
55 |
|
56 |
cap.release()
|
57 |
out.release()
|
58 |
+
cv2.destroyAllWindows()
|
59 |
+
|
60 |
+
return input_file # Return the original video file for consistency (can be adjusted)
|
61 |
|
62 |
else:
|
63 |
raise ValueError("Unsupported file format. Please upload an image or video.")
|
|
|
66 |
interface = gr.Interface(
|
67 |
fn=yolo_inference,
|
68 |
inputs=gr.File(label="Upload an Image or Video"),
|
69 |
+
outputs="text", # Display a message about console output
|
70 |
title="YOLO Object Detection",
|
71 |
+
description="Upload an image or video for object detection. The results are displayed on the console."
|
72 |
)
|
73 |
|
74 |
# Launch the app
|