Spaces:
Building
Building
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunClip). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import re | |
import os | |
import sys | |
import copy | |
import librosa | |
import logging | |
import argparse | |
import numpy as np | |
import soundfile as sf | |
from moviepy.editor import * | |
import moviepy.editor as mpy | |
from moviepy.video.tools.subtitles import SubtitlesClip, TextClip | |
from moviepy.editor import VideoFileClip, concatenate_videoclips | |
from moviepy.video.compositing import CompositeVideoClip | |
from utils.subtitle_utils import generate_srt, generate_srt_clip | |
from utils.argparse_tools import ArgumentParser, get_commandline_args | |
from utils.trans_utils import pre_proc, proc, write_state, load_state, proc_spk, convert_pcm_to_float | |
class VideoClipper(): | |
def __init__(self, funasr_model): | |
logging.warning("Initializing VideoClipper.") | |
self.funasr_model = funasr_model | |
self.GLOBAL_COUNT = 0 | |
def recog(self, audio_input, sd_switch='no', state=None, hotwords="", output_dir=None): | |
if state is None: | |
state = {} | |
sr, data = audio_input | |
# Convert to float64 consistently (includes data type checking) | |
data = convert_pcm_to_float(data) | |
# assert sr == 16000, "16kHz sample rate required, {} given.".format(sr) | |
if sr != 16000: # resample with librosa | |
data = librosa.resample(data, orig_sr=sr, target_sr=16000) | |
if len(data.shape) == 2: # multi-channel wav input | |
logging.warning("Input wav shape: {}, only first channel reserved.".format(data.shape)) | |
data = data[:,0] | |
state['audio_input'] = (sr, data) | |
if sd_switch == 'Yes': | |
rec_result = self.funasr_model.generate(data, | |
return_spk_res=True, | |
return_raw_text=True, | |
is_final=True, | |
output_dir=output_dir, | |
hotword=hotwords, | |
pred_timestamp=self.lang=='en', | |
en_post_proc=self.lang=='en', | |
cache={}) | |
res_srt = generate_srt(rec_result[0]['sentence_info']) | |
state['sd_sentences'] = rec_result[0]['sentence_info'] | |
else: | |
rec_result = self.funasr_model.generate(data, | |
return_spk_res=False, | |
sentence_timestamp=True, | |
return_raw_text=True, | |
is_final=True, | |
hotword=hotwords, | |
output_dir=output_dir, | |
pred_timestamp=self.lang=='en', | |
en_post_proc=self.lang=='en', | |
cache={}) | |
res_srt = generate_srt(rec_result[0]['sentence_info']) | |
state['recog_res_raw'] = rec_result[0]['raw_text'] | |
state['timestamp'] = rec_result[0]['timestamp'] | |
state['sentences'] = rec_result[0]['sentence_info'] | |
res_text = rec_result[0]['text'] | |
return res_text, res_srt, state | |
def clip(self, dest_text, start_ost, end_ost, state, dest_spk=None, output_dir=None, timestamp_list=None): | |
# get from state | |
audio_input = state['audio_input'] | |
recog_res_raw = state['recog_res_raw'] | |
timestamp = state['timestamp'] | |
sentences = state['sentences'] | |
sr, data = audio_input | |
data = data.astype(np.float64) | |
if timestamp_list is None: | |
all_ts = [] | |
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state: | |
for _dest_text in dest_text.split('#'): | |
if '[' in _dest_text: | |
match = re.search(r'\[(\d+),\s*(\d+)\]', _dest_text) | |
if match: | |
offset_b, offset_e = map(int, match.groups()) | |
log_append = "" | |
else: | |
offset_b, offset_e = 0, 0 | |
log_append = "(Bracket detected in dest_text but offset time matching failed)" | |
_dest_text = _dest_text[:_dest_text.find('[')] | |
else: | |
log_append = "" | |
offset_b, offset_e = 0, 0 | |
_dest_text = pre_proc(_dest_text) | |
ts = proc(recog_res_raw, timestamp, _dest_text) | |
for _ts in ts: all_ts.append([_ts[0]+offset_b*16, _ts[1]+offset_e*16]) | |
if len(ts) > 1 and match: | |
log_append += '(offsets detected but No.{} sub-sentence matched to {} periods in audio, \ | |
offsets are applied to all periods)' | |
else: | |
for _dest_spk in dest_spk.split('#'): | |
ts = proc_spk(_dest_spk, state['sd_sentences']) | |
for _ts in ts: all_ts.append(_ts) | |
log_append = "" | |
else: | |
all_ts = timestamp_list | |
ts = all_ts | |
# ts.sort() | |
srt_index = 0 | |
clip_srt = "" | |
if len(ts): | |
start, end = ts[0] | |
start = min(max(0, start+start_ost*16), len(data)) | |
end = min(max(0, end+end_ost*16), len(data)) | |
res_audio = data[start:end] | |
start_end_info = "from {} to {}".format(start/16000, end/16000) | |
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index) | |
clip_srt += srt_clip | |
for _ts in ts[1:]: # multiple sentence input or multiple output matched | |
start, end = _ts | |
start = min(max(0, start+start_ost*16), len(data)) | |
end = min(max(0, end+end_ost*16), len(data)) | |
start_end_info += ", from {} to {}".format(start, end) | |
res_audio = np.concatenate([res_audio, data[start+start_ost*16:end+end_ost*16]], -1) | |
srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index-1) | |
clip_srt += srt_clip | |
if len(ts): | |
message = "{} periods found in the speech: ".format(len(ts)) + start_end_info + log_append | |
else: | |
message = "No period found in the speech, return raw speech. You may check the recognition result and try other destination text." | |
res_audio = data | |
return (sr, res_audio), message, clip_srt | |
def video_recog(self, video_filename, sd_switch='no', hotwords="", output_dir=None): | |
video = mpy.VideoFileClip(video_filename) | |
# Extract the base name, add '_clip.mp4', and 'wav' | |
if output_dir is not None: | |
os.makedirs(output_dir, exist_ok=True) | |
_, base_name = os.path.split(video_filename) | |
base_name, _ = os.path.splitext(base_name) | |
clip_video_file = base_name + '_clip.mp4' | |
audio_file = base_name + '.wav' | |
audio_file = os.path.join(output_dir, audio_file) | |
else: | |
base_name, _ = os.path.splitext(video_filename) | |
clip_video_file = base_name + '_clip.mp4' | |
audio_file = base_name + '.wav' | |
video.audio.write_audiofile(audio_file) | |
wav = librosa.load(audio_file, sr=16000)[0] | |
# delete the audio file after processing | |
if os.path.exists(audio_file): | |
os.remove(audio_file) | |
state = { | |
'video_filename': video_filename, | |
'clip_video_file': clip_video_file, | |
'video': video, | |
} | |
# res_text, res_srt = self.recog((16000, wav), state) | |
return self.recog((16000, wav), sd_switch, state, hotwords, output_dir) | |
def video_clip(self, | |
dest_text, | |
start_ost, | |
end_ost, | |
state, | |
font_size=32, | |
font_color='white', | |
add_sub=False, | |
dest_spk=None, | |
output_dir=None, | |
timestamp_list=None): | |
# get from state | |
recog_res_raw = state['recog_res_raw'] | |
timestamp = state['timestamp'] | |
sentences = state['sentences'] | |
video = state['video'] | |
clip_video_file = state['clip_video_file'] | |
video_filename = state['video_filename'] | |
if timestamp_list is None: | |
all_ts = [] | |
if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state: | |
for _dest_text in dest_text.split('#'): | |
if '[' in _dest_text: | |
match = re.search(r'\[(\d+),\s*(\d+)\]', _dest_text) | |
if match: | |
offset_b, offset_e = map(int, match.groups()) | |
log_append = "" | |
else: | |
offset_b, offset_e = 0, 0 | |
log_append = "(Bracket detected in dest_text but offset time matching failed)" | |
_dest_text = _dest_text[:_dest_text.find('[')] | |
else: | |
offset_b, offset_e = 0, 0 | |
log_append = "" | |
# import pdb; pdb.set_trace() | |
_dest_text = pre_proc(_dest_text) | |
ts = proc(recog_res_raw, timestamp, _dest_text.lower()) | |
for _ts in ts: all_ts.append([_ts[0]+offset_b*16, _ts[1]+offset_e*16]) | |
if len(ts) > 1 and match: | |
log_append += '(offsets detected but No.{} sub-sentence matched to {} periods in audio, \ | |
offsets are applied to all periods)' | |
else: | |
for _dest_spk in dest_spk.split('#'): | |
ts = proc_spk(_dest_spk, state['sd_sentences']) | |
for _ts in ts: all_ts.append(_ts) | |
else: # AI clip pass timestamp as input directly | |
all_ts = [[i[0]*16.0, i[1]*16.0] for i in timestamp_list] | |
srt_index = 0 | |
time_acc_ost = 0.0 | |
ts = all_ts | |
# ts.sort() | |
clip_srt = "" | |
if len(ts): | |
if self.lang == 'en' and isinstance(sentences, str): | |
sentences = sentences.split() | |
start, end = ts[0][0] / 16000, ts[0][1] / 16000 | |
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index, time_acc_ost=time_acc_ost) | |
start, end = start+start_ost/1000.0, end+end_ost/1000.0 | |
video_clip = video.subclip(start, end) | |
start_end_info = "from {} to {}".format(start, end) | |
clip_srt += srt_clip | |
if add_sub: | |
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color) | |
subtitles = SubtitlesClip(subs, generator) | |
video_clip = CompositeVideoClip([video_clip, subtitles.set_pos(('center','bottom'))]) | |
concate_clip = [video_clip] | |
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0) | |
for _ts in ts[1:]: | |
start, end = _ts[0] / 16000, _ts[1] / 16000 | |
srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index-1, time_acc_ost=time_acc_ost) | |
if not len(subs): | |
continue | |
chi_subs = [] | |
sub_starts = subs[0][0][0] | |
for sub in subs: | |
chi_subs.append(((sub[0][0]-sub_starts, sub[0][1]-sub_starts), sub[1])) | |
start, end = start+start_ost/1000.0, end+end_ost/1000.0 | |
_video_clip = video.subclip(start, end) | |
start_end_info += ", from {} to {}".format(str(start)[:5], str(end)[:5]) | |
clip_srt += srt_clip | |
if add_sub: | |
generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color) | |
subtitles = SubtitlesClip(chi_subs, generator) | |
_video_clip = CompositeVideoClip([_video_clip, subtitles.set_pos(('center','bottom'))]) | |
# _video_clip.write_videofile("debug.mp4", audio_codec="aac") | |
concate_clip.append(copy.copy(_video_clip)) | |
time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0) | |
message = "{} periods found in the audio: ".format(len(ts)) + start_end_info | |
logging.warning("Concating...") | |
if len(concate_clip) > 1: | |
video_clip = concatenate_videoclips(concate_clip) | |
# clip_video_file = clip_video_file[:-4] + '_no{}.mp4'.format(self.GLOBAL_COUNT) | |
if output_dir is not None: | |
os.makedirs(output_dir, exist_ok=True) | |
_, file_with_extension = os.path.split(clip_video_file) | |
clip_video_file_name, _ = os.path.splitext(file_with_extension) | |
print(output_dir, clip_video_file) | |
clip_video_file = os.path.join(output_dir, "{}_no{}.mp4".format(clip_video_file_name, self.GLOBAL_COUNT)) | |
temp_audio_file = os.path.join(output_dir, "{}_tempaudio_no{}.mp4".format(clip_video_file_name, self.GLOBAL_COUNT)) | |
else: | |
clip_video_file = clip_video_file[:-4] + '_no{}.mp4'.format(self.GLOBAL_COUNT) | |
temp_audio_file = clip_video_file[:-4] + '_tempaudio_no{}.mp4'.format(self.GLOBAL_COUNT) | |
video_clip.write_videofile(clip_video_file, audio_codec="aac", temp_audiofile=temp_audio_file) | |
self.GLOBAL_COUNT += 1 | |
else: | |
clip_video_file = video_filename | |
message = "No period found in the audio, return raw speech. You may check the recognition result and try other destination text." | |
srt_clip = '' | |
return clip_video_file, message, clip_srt | |
def get_parser(): | |
parser = ArgumentParser( | |
description="ClipVideo Argument", | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | |
) | |
parser.add_argument( | |
"--stage", | |
type=int, | |
choices=(1, 2), | |
help="Stage, 0 for recognizing and 1 for clipping", | |
required=True | |
) | |
parser.add_argument( | |
"--file", | |
type=str, | |
default=None, | |
help="Input file path", | |
required=True | |
) | |
parser.add_argument( | |
"--sd_switch", | |
type=str, | |
choices=("no", "yes"), | |
default="no", | |
help="Turn on the speaker diarization or not", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default='./output', | |
help="Output files path", | |
) | |
parser.add_argument( | |
"--dest_text", | |
type=str, | |
default=None, | |
help="Destination text string for clipping", | |
) | |
parser.add_argument( | |
"--dest_spk", | |
type=str, | |
default=None, | |
help="Destination spk id for clipping", | |
) | |
parser.add_argument( | |
"--start_ost", | |
type=int, | |
default=0, | |
help="Offset time in ms at beginning for clipping" | |
) | |
parser.add_argument( | |
"--end_ost", | |
type=int, | |
default=0, | |
help="Offset time in ms at ending for clipping" | |
) | |
parser.add_argument( | |
"--output_file", | |
type=str, | |
default=None, | |
help="Output file path" | |
) | |
parser.add_argument( | |
"--lang", | |
type=str, | |
default='zh', | |
help="language" | |
) | |
return parser | |
def runner(stage, file, sd_switch, output_dir, dest_text, dest_spk, start_ost, end_ost, output_file, config=None, lang='zh'): | |
audio_suffixs = ['.wav','.mp3','.aac','.m4a','.flac'] | |
video_suffixs = ['.mp4','.avi','.mkv','.flv','.mov','.webm','.ts','.mpeg'] | |
_,ext = os.path.splitext(file) | |
if ext.lower() in audio_suffixs: | |
mode = 'audio' | |
elif ext.lower() in video_suffixs: | |
mode = 'video' | |
else: | |
logging.error("Unsupported file format: {}\n\nplease choise one of the following: {}".format(file),audio_suffixs+video_suffixs) | |
sys.exit(1) # exit if the file is not supported | |
while output_dir.endswith('/'): | |
output_dir = output_dir[:-1] | |
if not os.path.exists(output_dir): | |
os.mkdir(output_dir) | |
if stage == 1: | |
from funasr import AutoModel | |
# initialize funasr automodel | |
logging.warning("Initializing modelscope asr pipeline.") | |
if lang == 'zh': | |
funasr_model = AutoModel(model="iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", | |
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", | |
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", | |
spk_model="damo/speech_campplus_sv_zh-cn_16k-common", | |
) | |
audio_clipper = VideoClipper(funasr_model) | |
audio_clipper.lang = 'zh' | |
elif lang == 'en': | |
funasr_model = AutoModel(model="iic/speech_paraformer_asr-en-16k-vocab4199-pytorch", | |
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", | |
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", | |
spk_model="damo/speech_campplus_sv_zh-cn_16k-common", | |
) | |
audio_clipper = VideoClipper(funasr_model) | |
audio_clipper.lang = 'en' | |
if mode == 'audio': | |
logging.warning("Recognizing audio file: {}".format(file)) | |
wav, sr = librosa.load(file, sr=16000) | |
res_text, res_srt, state = audio_clipper.recog((sr, wav), sd_switch) | |
if mode == 'video': | |
logging.warning("Recognizing video file: {}".format(file)) | |
res_text, res_srt, state = audio_clipper.video_recog(file, sd_switch) | |
total_srt_file = output_dir + '/total.srt' | |
with open(total_srt_file, 'w') as fout: | |
fout.write(res_srt) | |
logging.warning("Write total subtitle to {}".format(total_srt_file)) | |
write_state(output_dir, state) | |
logging.warning("Recognition successed. You can copy the text segment from below and use stage 2.") | |
print(res_text) | |
if stage == 2: | |
audio_clipper = VideoClipper(None) | |
if mode == 'audio': | |
state = load_state(output_dir) | |
wav, sr = librosa.load(file, sr=16000) | |
state['audio_input'] = (sr, wav) | |
(sr, audio), message, srt_clip = audio_clipper.clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk) | |
if output_file is None: | |
output_file = output_dir + '/result.wav' | |
clip_srt_file = output_file[:-3] + 'srt' | |
logging.warning(message) | |
sf.write(output_file, audio, 16000) | |
assert output_file.endswith('.wav'), "output_file must ends with '.wav'" | |
logging.warning("Save clipped wav file to {}".format(output_file)) | |
with open(clip_srt_file, 'w') as fout: | |
fout.write(srt_clip) | |
logging.warning("Write clipped subtitle to {}".format(clip_srt_file)) | |
if mode == 'video': | |
state = load_state(output_dir) | |
state['video_filename'] = file | |
if output_file is None: | |
state['clip_video_file'] = file[:-4] + '_clip.mp4' | |
else: | |
state['clip_video_file'] = output_file | |
clip_srt_file = state['clip_video_file'][:-3] + 'srt' | |
state['video'] = mpy.VideoFileClip(file) | |
clip_video_file, message, srt_clip = audio_clipper.video_clip(dest_text, start_ost, end_ost, state, dest_spk=dest_spk) | |
logging.warning("Clipping Log: {}".format(message)) | |
logging.warning("Save clipped mp4 file to {}".format(clip_video_file)) | |
with open(clip_srt_file, 'w') as fout: | |
fout.write(srt_clip) | |
logging.warning("Write clipped subtitle to {}".format(clip_srt_file)) | |
def main(cmd=None): | |
print(get_commandline_args(), file=sys.stderr) | |
parser = get_parser() | |
args = parser.parse_args(cmd) | |
kwargs = vars(args) | |
runner(**kwargs) | |
if __name__ == '__main__': | |
main() |