kebincontreras's picture
Upload 13 files
91487c5 verified
import torch
import torch_dct as dct
import torch.nn.functional as F
def modulo(x, L):
positive = x > 0
x = x % L
x = torch.where( ( x == 0) & positive, L, x)
return x
def center_modulo(x, L):
return modulo(x + L/2, L) - L/2
def hard_threshold(x, threshold):
return torch.where(torch.abs(x) > threshold, x, torch.zeros_like(x))
def recons_spud(y, threshold=0.1, mx=1.0):
# Mdx_y = M( Delta_x @ y ) , Mdy_y = M( Delta_y @ y )
Mdx_y = F.pad( center_modulo(torch.diff(y, 1, dim=-1), mx), (1, 0), mode='constant')
Mdy_y = F.pad( center_modulo(torch.diff(y, 1, dim=-2), mx), (0, 0, 1, 0), mode='constant')
# DTMDy = D^T ( Mdx_y, Mdy_y )
rho = - ( torch.diff(F.pad(Mdx_y, (0, 1)), 1, dim=-1) + torch.diff(F.pad(Mdy_y, (0,0, 0, 1)), 1, dim=-2) )
dct_rho = dct.dct_2d(rho, norm='ortho')
NX, MX = rho.shape[-1], rho.shape[-2]
I, J = torch.meshgrid(torch.arange(0, MX), torch.arange(0, NX), indexing="ij")
I, J = I.to(rho.device), J.to(rho.device)
I, J = I.unsqueeze(0).unsqueeze(0), J.unsqueeze(0).unsqueeze(0)
denom = 2 * ( 2 - ( torch.cos(torch.pi * I / MX ) + torch.cos(torch.pi * J / NX ) ) )
denom = denom.to(rho.device)
dct_phi = dct_rho / denom
dct_phi[..., 0, 0] = 0
dct_phi = hard_threshold(dct_phi, threshold)
phi = dct.idct_2d(dct_phi, norm='ortho')
phi = phi - phi.min()
phi = phi / phi.max()
return phi