|
import torch
|
|
import torch_dct as dct
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def modulo(x, L):
|
|
positive = x > 0
|
|
x = x % L
|
|
x = torch.where( ( x == 0) & positive, L, x)
|
|
return x
|
|
|
|
|
|
def center_modulo(x, L):
|
|
return modulo(x + L/2, L) - L/2
|
|
|
|
|
|
def hard_threshold(x, threshold):
|
|
return torch.where(torch.abs(x) > threshold, x, torch.zeros_like(x))
|
|
|
|
|
|
def recons_spud(y, threshold=0.1, mx=1.0):
|
|
|
|
|
|
Mdx_y = F.pad( center_modulo(torch.diff(y, 1, dim=-1), mx), (1, 0), mode='constant')
|
|
Mdy_y = F.pad( center_modulo(torch.diff(y, 1, dim=-2), mx), (0, 0, 1, 0), mode='constant')
|
|
|
|
|
|
rho = - ( torch.diff(F.pad(Mdx_y, (0, 1)), 1, dim=-1) + torch.diff(F.pad(Mdy_y, (0,0, 0, 1)), 1, dim=-2) )
|
|
|
|
dct_rho = dct.dct_2d(rho, norm='ortho')
|
|
|
|
NX, MX = rho.shape[-1], rho.shape[-2]
|
|
I, J = torch.meshgrid(torch.arange(0, MX), torch.arange(0, NX), indexing="ij")
|
|
I, J = I.to(rho.device), J.to(rho.device)
|
|
|
|
I, J = I.unsqueeze(0).unsqueeze(0), J.unsqueeze(0).unsqueeze(0)
|
|
|
|
denom = 2 * ( 2 - ( torch.cos(torch.pi * I / MX ) + torch.cos(torch.pi * J / NX ) ) )
|
|
denom = denom.to(rho.device)
|
|
|
|
dct_phi = dct_rho / denom
|
|
dct_phi[..., 0, 0] = 0
|
|
|
|
dct_phi = hard_threshold(dct_phi, threshold)
|
|
|
|
phi = dct.idct_2d(dct_phi, norm='ortho')
|
|
phi = phi - phi.min()
|
|
phi = phi / phi.max()
|
|
|
|
return phi |