kebincontreras's picture
Upload 13 files
91487c5 verified
from ultralytics import YOLOv10
import os
import torch
def yolov10_inference(image, model_id, image_size, conf_threshold):
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
detections = []
if results and len(results) > 0:
for result in results:
for box in result.boxes:
detections.append({
"coords": box.xyxy.cpu().numpy(),
"class": result.names[int(box.cls.cpu())],
"conf": box.conf.cpu().numpy()
#"bbox": box.xyxy.cpu().numpy().tolist()
})
return results[0].plot() if results and len(results) > 0 else image, detections
def calculate_iou(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def calculate_detection_metrics(detections_true, detections_pred):
true_positives = 0
pred_positives = len(detections_pred)
real_positives = len(detections_true)
ious = []
for pred in detections_pred:
for real in detections_true:
if pred['class'] == real['class']:
iou = calculate_iou(pred['coords'].flatten(), real['coords'].flatten())
if iou >= 0.5:
true_positives += 1
ious.append(iou)
break
precision = true_positives / pred_positives if pred_positives > 0 else 0
recall = true_positives / real_positives if real_positives > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
average_iou = sum(ious) / len(ious) if ious else 0
return {"Precision": precision, "Recall": recall, "F1-Score": f1_score, "IOU": average_iou}
def read_kitti_annotations(file_path):
ground_truths = []
with open(file_path, 'r') as file:
for line in file:
parts = line.strip().split()
if parts[0] != 'DontCare': # Ignorar 'DontCare'
class_label = parts[0].lower() # Clase en min煤scula
bbox = [float(parts[4]), float(parts[5]), float(parts[6]), float(parts[7])]
ground_truths.append({'class': class_label, 'bbox': bbox})
return ground_truths
def save_detections(detections, output_dir, filename='detections.txt'):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(os.path.join(output_dir, filename), 'w') as file:
for detection in detections:
class_label = detection['class']
bbox = ','.join(map(str, detection['bbox']))
file.write(f"{class_label},[{bbox}]\n")
def yolov10_inference_1(image, model_id, image_size, conf_threshold):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}').to(device)
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
detections = []
if results and len(results) > 0:
for result in results:
for box in result.boxes:
detections.append({
#"coords": box.xyxy.cpu().numpy(),
"class": result.names[int(box.cls.cpu())],
#"conf": box.conf.cpu().numpy()
"bbox": box.xyxy.cpu().numpy().tolist()
})
return results[0].plot() if results and len(results) > 0 else image, detections
def calculate_iou_1(boxA, boxB):
# Aseg煤rate de que boxA y boxB son listas planas de flotantes
# Esto es necesario porque la funci贸n max() y min() requieren comparar elementos directamente
boxA = [float(num) for sublist in boxA for num in sublist] if isinstance(boxA[0], list) else [float(num) for num in boxA]
boxB = [float(num) for sublist in boxB for num in sublist] if isinstance(boxB[0], list) else [float(num) for num in boxB]
# Determina las coordenadas de la intersecci贸n
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# Calcula el 谩rea de la intersecci贸n
interArea = max(0, xB - xA) * max(0, yB - yA)
# Calcula el 谩rea de cada cuadro delimitador y la uni贸n
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
unionArea = boxAArea + boxBArea - interArea
# Calcula el IoU
iou = interArea / float(unionArea)
return iou
def calculate_detection_metrics_1(detections_true, detections_pred):
true_positives = 0
pred_positives = len(detections_pred)
real_positives = len(detections_true)
ious = []
for pred in detections_pred:
pred_bbox = pred['bbox']
pred_class = pred['class']
for real in detections_true:
real_bbox = real['bbox']
real_class = real['class']
if pred_class == real_class:
iou = calculate_iou_1(pred_bbox, real_bbox)
if iou >= 0.5:
true_positives += 1
ious.append(iou)
break
precision = true_positives / pred_positives if pred_positives > 0 else 0
recall = true_positives / real_positives if real_positives > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
average_iou = sum(ious) / len(ious) if ious else 0
return {"Precision": precision, "Recall": recall, "F1-Score": f1_score, "IOU": average_iou}