|
|
|
from ultralytics import YOLOv10
|
|
import os
|
|
import torch
|
|
|
|
def yolov10_inference(image, model_id, image_size, conf_threshold):
|
|
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
|
|
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
|
|
detections = []
|
|
if results and len(results) > 0:
|
|
for result in results:
|
|
for box in result.boxes:
|
|
detections.append({
|
|
"coords": box.xyxy.cpu().numpy(),
|
|
"class": result.names[int(box.cls.cpu())],
|
|
"conf": box.conf.cpu().numpy()
|
|
|
|
})
|
|
return results[0].plot() if results and len(results) > 0 else image, detections
|
|
|
|
def calculate_iou(boxA, boxB):
|
|
xA = max(boxA[0], boxB[0])
|
|
yA = max(boxA[1], boxB[1])
|
|
xB = min(boxA[2], boxB[2])
|
|
yB = min(boxA[3], boxB[3])
|
|
interArea = max(0, xB - xA) * max(0, yB - yA)
|
|
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
|
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
|
iou = interArea / float(boxAArea + boxBArea - interArea)
|
|
return iou
|
|
|
|
|
|
|
|
def calculate_detection_metrics(detections_true, detections_pred):
|
|
true_positives = 0
|
|
pred_positives = len(detections_pred)
|
|
real_positives = len(detections_true)
|
|
ious = []
|
|
for pred in detections_pred:
|
|
for real in detections_true:
|
|
if pred['class'] == real['class']:
|
|
iou = calculate_iou(pred['coords'].flatten(), real['coords'].flatten())
|
|
if iou >= 0.5:
|
|
true_positives += 1
|
|
ious.append(iou)
|
|
break
|
|
precision = true_positives / pred_positives if pred_positives > 0 else 0
|
|
recall = true_positives / real_positives if real_positives > 0 else 0
|
|
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
|
average_iou = sum(ious) / len(ious) if ious else 0
|
|
return {"Precision": precision, "Recall": recall, "F1-Score": f1_score, "IOU": average_iou}
|
|
|
|
|
|
|
|
|
|
def read_kitti_annotations(file_path):
|
|
ground_truths = []
|
|
with open(file_path, 'r') as file:
|
|
for line in file:
|
|
parts = line.strip().split()
|
|
if parts[0] != 'DontCare':
|
|
class_label = parts[0].lower()
|
|
bbox = [float(parts[4]), float(parts[5]), float(parts[6]), float(parts[7])]
|
|
ground_truths.append({'class': class_label, 'bbox': bbox})
|
|
return ground_truths
|
|
|
|
|
|
def save_detections(detections, output_dir, filename='detections.txt'):
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
with open(os.path.join(output_dir, filename), 'w') as file:
|
|
for detection in detections:
|
|
class_label = detection['class']
|
|
bbox = ','.join(map(str, detection['bbox']))
|
|
file.write(f"{class_label},[{bbox}]\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def yolov10_inference_1(image, model_id, image_size, conf_threshold):
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}').to(device)
|
|
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
|
|
detections = []
|
|
if results and len(results) > 0:
|
|
for result in results:
|
|
for box in result.boxes:
|
|
detections.append({
|
|
|
|
"class": result.names[int(box.cls.cpu())],
|
|
|
|
|
|
"bbox": box.xyxy.cpu().numpy().tolist()
|
|
})
|
|
return results[0].plot() if results and len(results) > 0 else image, detections
|
|
|
|
|
|
def calculate_iou_1(boxA, boxB):
|
|
|
|
|
|
boxA = [float(num) for sublist in boxA for num in sublist] if isinstance(boxA[0], list) else [float(num) for num in boxA]
|
|
boxB = [float(num) for sublist in boxB for num in sublist] if isinstance(boxB[0], list) else [float(num) for num in boxB]
|
|
|
|
|
|
xA = max(boxA[0], boxB[0])
|
|
yA = max(boxA[1], boxB[1])
|
|
xB = min(boxA[2], boxB[2])
|
|
yB = min(boxA[3], boxB[3])
|
|
|
|
|
|
interArea = max(0, xB - xA) * max(0, yB - yA)
|
|
|
|
|
|
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
|
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
|
unionArea = boxAArea + boxBArea - interArea
|
|
|
|
|
|
iou = interArea / float(unionArea)
|
|
return iou
|
|
|
|
|
|
def calculate_detection_metrics_1(detections_true, detections_pred):
|
|
true_positives = 0
|
|
pred_positives = len(detections_pred)
|
|
real_positives = len(detections_true)
|
|
ious = []
|
|
for pred in detections_pred:
|
|
pred_bbox = pred['bbox']
|
|
pred_class = pred['class']
|
|
for real in detections_true:
|
|
real_bbox = real['bbox']
|
|
real_class = real['class']
|
|
if pred_class == real_class:
|
|
iou = calculate_iou_1(pred_bbox, real_bbox)
|
|
if iou >= 0.5:
|
|
true_positives += 1
|
|
ious.append(iou)
|
|
break
|
|
precision = true_positives / pred_positives if pred_positives > 0 else 0
|
|
recall = true_positives / real_positives if real_positives > 0 else 0
|
|
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
|
average_iou = sum(ious) / len(ious) if ious else 0
|
|
return {"Precision": precision, "Recall": recall, "F1-Score": f1_score, "IOU": average_iou}
|
|
|
|
|
|
|