Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,13 @@ from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForSeq2SeqLM,
|
|
| 3 |
import torch
|
| 4 |
from langchain.memory import ConversationBufferMemory
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
# Load the tokenizer and model for DistilGPT-2
|
| 7 |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
| 8 |
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
|
|
|
|
| 9 |
|
| 10 |
# Load summarization model (e.g., T5-small)
|
| 11 |
summarizer_tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
|
@@ -20,10 +24,6 @@ def summarize_history(history):
|
|
| 20 |
summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 21 |
return summary
|
| 22 |
|
| 23 |
-
# Move model to device (GPU if available)
|
| 24 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 25 |
-
model.to(device)
|
| 26 |
-
|
| 27 |
# Set up conversational memory using LangChain's ConversationBufferMemory
|
| 28 |
memory = ConversationBufferMemory()
|
| 29 |
|
|
|
|
| 3 |
import torch
|
| 4 |
from langchain.memory import ConversationBufferMemory
|
| 5 |
|
| 6 |
+
# Move model to device (GPU if available)
|
| 7 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 8 |
+
|
| 9 |
# Load the tokenizer and model for DistilGPT-2
|
| 10 |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
| 11 |
model = GPT2LMHeadModel.from_pretrained("distilgpt2")
|
| 12 |
+
model.to(device)
|
| 13 |
|
| 14 |
# Load summarization model (e.g., T5-small)
|
| 15 |
summarizer_tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
|
|
|
| 24 |
summary = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 25 |
return summary
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Set up conversational memory using LangChain's ConversationBufferMemory
|
| 28 |
memory = ConversationBufferMemory()
|
| 29 |
|