Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import transformers | |
import pandas as pd | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
from transformers import MarianMTModel, MarianTokenizer | |
model_name = st.radio("Select a model", [ | |
'Helsinki-NLP/opus-mt-roa-en', | |
'Helsinki-NLP/opus-mt-en-roa', | |
'other' | |
]) | |
if model_name == 'other': | |
model_name = st.text_input("Enter model name", 'Helsinki-NLP/opus-mt-ROMANCE-en') | |
if not hasattr(st, "cache_resource"): | |
st.cache_resource = st.experimental_singleton | |
def get_tokenizer(model_name): | |
return MarianTokenizer.from_pretrained(model_name) | |
def get_model(model_name): | |
model = MarianMTModel.from_pretrained(model_name).to(device) | |
print(f"Loaded model, {model.num_parameters():,d} parameters.") | |
return model | |
tokenizer = get_tokenizer(model_name) | |
model = get_model(model_name) | |
if tokenizer.supported_language_codes: | |
lang_code = st.selectbox("Select a language", tokenizer.supported_language_codes) | |
else: | |
lang_code = None | |
input_text = st.text_input("Enter text to translate", "Hola, mi nombre es Juan") | |
input_text = input_text.strip() | |
if not input_text: | |
st.stop() | |
# prepend the language code if necessary | |
if lang_code: | |
input_text = f"{lang_code} {input_text}" | |
output_so_far = st.text_input("Enter text translated so far", "Hello, my") | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) | |
example_generations = model.generate( | |
input_ids, | |
num_beams=4, | |
num_return_sequences=4, | |
) | |
st.write("Example generations:") | |
st.write(tokenizer.batch_decode(example_generations, skip_special_tokens=True)) | |
# tokenize the output so far | |
with tokenizer.as_target_tokenizer(): | |
output_tokens = tokenizer.tokenize(output_so_far) | |
decoder_input_ids = tokenizer.convert_tokens_to_ids(output_tokens) | |
# Add the start token | |
decoder_input_ids = [model.config.decoder_start_token_id] + decoder_input_ids | |
with torch.no_grad(): | |
model_output = model( | |
input_ids = input_ids, | |
decoder_input_ids = torch.tensor([decoder_input_ids]).to(device)) | |
last_token_logits = model_output.logits[0, -1].cpu() | |
assert len(last_token_logits.shape) == 1 | |
most_likely_tokens = last_token_logits.topk(k=20) | |
probs = last_token_logits.softmax(dim=-1) | |
probs_for_likely_tokens = probs[most_likely_tokens.indices] | |
with tokenizer.as_target_tokenizer(): | |
probs_table = pd.DataFrame({ | |
'token': [tokenizer.decode(token_id) for token_id in most_likely_tokens.indices], | |
'id': most_likely_tokens.indices, | |
'probability': probs_for_likely_tokens, | |
'logprob': probs_for_likely_tokens.log(), | |
'cumulative probability': probs_for_likely_tokens.cumsum(0) | |
}) | |
st.write(probs_table) | |
loss_table = pd.DataFrame({ | |
'token': [tokenizer.decode(token_id) for token_id in decoder_input_ids[1:]], | |
'loss': F.cross_entropy(model_output.logits[0, :-1], torch.tensor(decoder_input_ids[1:]).to(device), reduction='none').cpu() | |
}) | |
st.write(loss_table) | |
st.write("Total loss so far:", loss_table.loss.sum()) |