next-token / app.py
kcarnold's picture
cleanups
6d1408f
raw
history blame
4.39 kB
import streamlit as st
if not hasattr(st, "cache_resource"):
st.cache_resource = st.experimental_singleton
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import pandas as pd
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from transformers import MarianMTModel, MarianTokenizer
model_options = [
'Helsinki-NLP/opus-mt-roa-en',
'Helsinki-NLP/opus-mt-en-roa',
]
col1, col2 = st.columns(2)
with col1:
model_name = st.selectbox("Select a model", model_options + ['other'])
if model_name == 'other':
model_name = st.text_input("Enter model name", model_options[0])
@st.cache_resource
def get_tokenizer(model_name):
return MarianTokenizer.from_pretrained(model_name)
@st.cache_resource
def get_model(model_name):
model = MarianMTModel.from_pretrained(model_name).to(device)
print(f"Loaded model, {model.num_parameters():,d} parameters.")
return model
tokenizer = get_tokenizer(model_name)
model = get_model(model_name)
if tokenizer.supported_language_codes:
lang_code = st.selectbox("Select a language", tokenizer.supported_language_codes)
else:
lang_code = None
with col2:
input_text = st.text_input("Enter text to translate", "Hola, mi nombre es Juan")
input_text = input_text.strip()
if not input_text:
st.stop()
# prepend the language code if necessary
if lang_code:
input_text = f"{lang_code} {input_text}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
example_generations = model.generate(
input_ids,
num_beams=4,
num_return_sequences=4,
max_length=100,
)
col1, col2 = st.columns(2)
with col1:
st.write("Example generations:")
st.write('\n'.join(
'- ' + translation
for translation in tokenizer.batch_decode(example_generations, skip_special_tokens=True)))
with col2:
example_first_word = tokenizer.decode(example_generations[0, 1])
output_so_far = st.text_input("Enter text translated so far", example_first_word)
# tokenize the output so far
with tokenizer.as_target_tokenizer():
output_tokens = tokenizer.tokenize(output_so_far)
decoder_input_ids = tokenizer.convert_tokens_to_ids(output_tokens)
# Add the start token
decoder_input_ids = [model.config.decoder_start_token_id] + decoder_input_ids
with torch.no_grad():
model_output = model(
input_ids = input_ids,
decoder_input_ids = torch.tensor([decoder_input_ids]).to(device))
with st.expander("Configuration"):
top_k = st.slider("Number of tokens to show", min_value=1, max_value=100, value=5)
temperature = st.slider("Temperature", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
show_token_ids = st.checkbox("Show token IDs", value=False)
show_logprobs = st.checkbox("Show log probabilities", value=False)
show_cumulative_probs = st.checkbox("Show cumulative probabilities", value=False)
last_token_logits = model_output.logits[0, -1].cpu()
assert len(last_token_logits.shape) == 1
# apply temperature
last_token_logits_with_temperature = last_token_logits / temperature
most_likely_tokens = last_token_logits.topk(k=top_k)
probs = last_token_logits_with_temperature.softmax(dim=-1)
probs_for_likely_tokens = probs[most_likely_tokens.indices]
with tokenizer.as_target_tokenizer():
prob_table_data = {
'token': [tokenizer.decode(token_id) for token_id in most_likely_tokens.indices],
}
if show_token_ids:
prob_table_data['id'] = most_likely_tokens.indices
prob_table_data['probability'] = probs_for_likely_tokens
if show_logprobs:
prob_table_data['logprob'] = last_token_logits.log_softmax(dim=-1)[most_likely_tokens.indices]
if show_cumulative_probs:
prob_table_data['cumulative probability'] = probs_for_likely_tokens.cumsum(0)
probs_table = pd.DataFrame(prob_table_data)
st.subheader("Most likely next tokens")
st.table(probs_table.style.hide(axis='index'))
if len(decoder_input_ids) > 1:
st.subheader("Loss by already-generated token")
loss_table = pd.DataFrame({
'token': [tokenizer.decode(token_id) for token_id in decoder_input_ids[1:]],
'loss': F.cross_entropy(model_output.logits[0, :-1], torch.tensor(decoder_input_ids[1:]).to(device), reduction='none').cpu()
})
st.write(loss_table)
st.write("Total loss so far:", loss_table.loss.sum())