Spaces:
Running
Running
import gradio as gr | |
import requests | |
import datadog_api_client | |
from PIL import Image | |
def compare_face(frame1, frame2): | |
url = "http://127.0.0.1:8080/compare_face" | |
files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')} | |
r = requests.post(url=url, files=files) | |
html = None | |
faces = None | |
compare_result = r.json().get('compare_result') | |
compare_similarity = r.json().get('compare_similarity') | |
html = ("<table>" | |
"<tr>" | |
"<th>Compare Result</th>" | |
"<th>Value</th>" | |
"</tr>" | |
"<tr>" | |
"<td>Result</td>" | |
"<td>{compare_result}</td>" | |
"</tr>" | |
"<tr>" | |
"<td>Similarity</td>" | |
"<td>{compare_similarity}</td>" | |
"</tr>" | |
"</table>".format(compare_result=compare_result, compare_similarity=compare_similarity)) | |
try: | |
image1 = Image.open(frame1) | |
image2 = Image.open(frame2) | |
face1 = None | |
face2 = None | |
if r.json().get('face1') is not None: | |
face = r.json().get('face1') | |
x1 = face.get('x1') | |
y1 = face.get('y1') | |
x2 = face.get('x2') | |
y2 = face.get('y2') | |
if x1 < 0: | |
x1 = 0 | |
if y1 < 0: | |
y1 = 0 | |
if x2 >= image1.width: | |
x2 = image1.width - 1 | |
if y2 >= image1.height: | |
y2 = image1.height - 1 | |
face1 = image1.crop((x1, y1, x2, y2)) | |
face_image_ratio = face1.width / float(face1.height) | |
resized_w = int(face_image_ratio * 150) | |
resized_h = 150 | |
face1 = face1.resize((int(resized_w), int(resized_h))) | |
if r.json().get('face2') is not None: | |
face = r.json().get('face2') | |
x1 = face.get('x1') | |
y1 = face.get('y1') | |
x2 = face.get('x2') | |
y2 = face.get('y2') | |
if x1 < 0: | |
x1 = 0 | |
if y1 < 0: | |
y1 = 0 | |
if x2 >= image2.width: | |
x2 = image2.width - 1 | |
if y2 >= image2.height: | |
y2 = image2.height - 1 | |
face2 = image2.crop((x1, y1, x2, y2)) | |
face_image_ratio = face2.width / float(face2.height) | |
resized_w = int(face_image_ratio * 150) | |
resized_h = 150 | |
face2 = face2.resize((int(resized_w), int(resized_h))) | |
if face1 is not None and face2 is not None: | |
new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80)) | |
new_image.paste(face1,(0,0)) | |
new_image.paste(face2,(face1.width + 10, 0)) | |
faces = new_image.copy() | |
elif face1 is not None and face2 is None: | |
new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80)) | |
new_image.paste(face1,(0,0)) | |
faces = new_image.copy() | |
elif face1 is None and face2 is not None: | |
new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80)) | |
new_image.paste(face2,(face2.width + 10, 0)) | |
faces = new_image.copy() | |
except: | |
pass | |
return [faces, html] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# KBY-AI - Face Recognition | |
We offer SDKs for face recognition, liveness detection(anti-spoofing) and ID card recognition. | |
We also specialize in providing outsourcing services with a variety of technical stacks like AI(Computer Vision/Machine Learning), Mobile apps, and web apps. | |
##### KYC Verification Demo - https://github.com/kby-ai/KYC-Verification-Demo-Android | |
##### ID Capture Web Demo - https://id-document-recognition-react-alpha.vercel.app | |
##### Documentation - Help Center - https://docs.kby-ai.com | |
""" | |
) | |
with gr.TabItem("Face Recognition"): | |
gr.Markdown( | |
""" | |
##### Docker Hub - https://hub.docker.com/r/kbyai/face-recognition | |
```bash | |
sudo docker pull kbyai/face-recognition:latest | |
sudo docker run -e LICENSE="xxxxx" -p 8081:8080 -p 9001:9000 kbyai/face-recognition:latest | |
``` | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
compare_face_input1 = gr.Image(type='filepath') | |
gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/5.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'], | |
inputs=compare_face_input1) | |
compare_face_button = gr.Button("Compare Face") | |
with gr.Column(): | |
compare_face_input2 = gr.Image(type='filepath') | |
gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/6.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'], | |
inputs=compare_face_input2) | |
with gr.Column(): | |
compare_face_output = gr.Image(type="pil").style(height=150) | |
compare_result_output = gr.HTML(label='Result') | |
compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_face_output, compare_result_output]) | |
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceRecognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fkby-ai%2FFaceRecognition&countColor=%23263759" /></a>') | |
demo.launch(server_name="0.0.0.0", server_port=7860) |