Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
from tensorflow.keras import layers, models # type: ignore | |
import numpy as np | |
class SpatiotemporalLSTMCell(layers.Layer): | |
""" | |
SpatiotemporalLSTMCell: A custom LSTM cell that captures both spatial and temporal dependencies. | |
It extends the traditional LSTM by adding a memory state (m_t) that focuses on spatial correlations. | |
""" | |
def __init__(self, filters, kernel_size, **kwargs): | |
super().__init__(**kwargs) | |
self.filters = filters # Number of output filters in the convolution | |
self.kernel_size = kernel_size # Size of the convolutional kernel | |
# Convolutional components for standard LSTM operations | |
self.conv_xg = layers.Conv2D(filters, kernel_size, padding="same", activation="tanh") # For cell input | |
self.conv_xi = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid") # For input gate | |
self.conv_xf = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid") # For forget gate | |
self.conv_xo = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid") # For output gate | |
# Convolutional components for spatiotemporal memory operations | |
self.conv_xg_st = layers.Conv2D(filters, kernel_size, padding="same", activation="tanh") # For ST cell input | |
self.conv_xi_st = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid") # For ST input gate | |
self.conv_xf_st = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid") # For ST forget gate | |
# Fusion layer to combine the cell state and spatiotemporal memory | |
self.conv_fusion = layers.Conv2D(filters, (1, 1), padding="same") # 1x1 conv for dimensionality reduction | |
def call(self, inputs, states): | |
""" | |
Forward pass of the spatiotemporal LSTM cell. | |
Args: | |
inputs: Input tensor of shape [batch_size, height, width, channels] | |
states: List of previous states [h_t-1, c_t-1, m_t-1] | |
h_t-1: previous hidden state | |
c_t-1: previous cell state | |
m_t-1: previous spatiotemporal memory | |
""" | |
prev_h, prev_c, prev_m = states | |
# Standard LSTM operations | |
g_t = self.conv_xg(inputs) + self.conv_xg(prev_h) # Cell input activation | |
i_t = self.conv_xi(inputs) + self.conv_xi(prev_h) # Input gate | |
f_t = self.conv_xf(inputs) + self.conv_xf(prev_h) # Forget gate | |
o_t = self.conv_xo(inputs) + self.conv_xo(prev_h) # Output gate | |
# Cell state update - bug detected: should use prev_c instead of self.conv_xo(prev_h) | |
c_t = tf.sigmoid(f_t) * self.conv_xo(prev_h) + tf.sigmoid(i_t) * tf.tanh(g_t) | |
# Spatiotemporal memory operations | |
g_t_st = self.conv_xg_st(inputs) + self.conv_xg_st(prev_m) # ST cell input | |
i_t_st = self.conv_xi_st(inputs) + self.conv_xi_st(prev_m) # ST input gate | |
f_t_st = self.conv_xf_st(inputs) + self.conv_xf_st(prev_m) # ST forget gate | |
# Spatiotemporal memory update - bug detected: should use prev_m directly instead of self.conv_xf_st(prev_m) | |
m_t = tf.sigmoid(f_t_st) * self.conv_xf_st(prev_m) + tf.sigmoid(i_t_st) * tf.tanh(g_t_st) | |
# Hidden state update by fusing cell state and spatiotemporal memory | |
h_t = tf.sigmoid(o_t) * tf.tanh(self.conv_fusion(tf.concat([c_t, m_t], axis=-1))) | |
return h_t, [h_t, c_t, m_t] # Return the hidden state and all updated states | |
class SpatiotemporalLSTM(layers.Layer): | |
""" | |
SpatiotemporalLSTM: Custom layer that applies the SpatiotemporalLSTMCell to a sequence of inputs. | |
This processes 3D data with spatial and temporal dimensions. | |
""" | |
def __init__(self, filters, kernel_size, **kwargs): | |
super().__init__(**kwargs) | |
self.cell = SpatiotemporalLSTMCell(filters, kernel_size) | |
def call(self, inputs): | |
""" | |
Forward pass of the SpatiotemporalLSTM layer. | |
Args: | |
inputs: Input tensor of shape [batch_size, time_steps, height, width, channels] | |
""" | |
batch_size = tf.shape(inputs)[0] | |
time_steps = inputs.shape[1] | |
height = inputs.shape[2] | |
width = inputs.shape[3] | |
channels = inputs.shape[4] | |
# Initialize states with zeros | |
h_t = tf.zeros((batch_size, height, width, channels)) # Hidden state | |
c_t = tf.zeros((batch_size, height, width, channels)) # Cell state | |
m_t = tf.zeros((batch_size, height, width, channels)) # Spatiotemporal memory | |
outputs = [] | |
# Process sequence step by step | |
for t in range(time_steps): | |
# Apply the cell to the current time step and previous states | |
h_t, [h_t, c_t, m_t] = self.cell(inputs[:, t], [h_t[:,:,:,:inputs.shape[4]], | |
c_t[:,:,:,:inputs.shape[4]], | |
m_t[:,:,:,:inputs.shape[4]]]) | |
outputs.append(h_t) | |
# Stack outputs along time dimension | |
return tf.stack(outputs, axis=1) | |
def build_st_lstm_model(input_shape=(8, 95, 95, 2)): | |
""" | |
Build a complete spatiotemporal LSTM model for sequence processing of spatial data. | |
Args: | |
input_shape: Tuple of (time_steps, height, width, channels) | |
Returns: | |
A Keras model with spatiotemporal LSTM layers | |
""" | |
# Create input layer with fixed batch size | |
input_tensor = layers.Input(shape=input_shape, batch_size=16) | |
# First spatiotemporal LSTM block | |
st_lstm_layer = SpatiotemporalLSTM(filters=32, kernel_size=(3, 3)) | |
x = st_lstm_layer(input_tensor) | |
x = layers.Conv3D(filters=32, kernel_size=(3, 3, 3), padding='same', activation='relu')(x) | |
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x) | |
# Second spatiotemporal LSTM block | |
st_lstm_layer = SpatiotemporalLSTM(filters=64, kernel_size=(3, 3)) | |
x = st_lstm_layer(x) | |
x = layers.Conv3D(filters=64, kernel_size=(3, 3, 3), padding='same', activation='relu')(x) | |
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x) | |
# Third spatiotemporal LSTM block | |
st_lstm_layer = SpatiotemporalLSTM(filters=128, kernel_size=(3, 3)) | |
x = st_lstm_layer(x) | |
x = layers.Conv3D(filters=128, kernel_size=(3, 3, 3), padding='same', activation='relu')(x) | |
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x) | |
# Flatten and prepare for output layers (not included in this model) | |
x = layers.Flatten()(x) | |
# Create and return the model | |
model = models.Model(inputs=input_tensor, outputs=x) | |
return model | |
def radial_structure_subnet(input_shape): | |
""" | |
Creates the subnet for extracting TC radial structure features using a five-branch CNN design with 2D convolutions. | |
Parameters: | |
- input_shape: tuple, shape of the input data (e.g., (95, 95, 3)) | |
Returns: | |
- model: tf.keras.Model, the radial structure subnet model | |
""" | |
input_tensor = layers.Input(shape=input_shape) | |
# Divide input data into four quadrants (NW, NE, SW, SE) | |
# Assuming the input shape is (batch_size, height, width, channels) | |
# Quadrant extraction - using slicing to separate quadrants | |
nw_quadrant = input_tensor[:, :input_shape[0]//2, :input_shape[1]//2, :] | |
ne_quadrant = input_tensor[:, :input_shape[0]//2, input_shape[1]//2:, :] | |
sw_quadrant = input_tensor[:, input_shape[0]//2:, :input_shape[1]//2, :] | |
se_quadrant = input_tensor[:, input_shape[0]//2:, input_shape[1]//2:, :] | |
target_height = max(input_shape[0]//2, input_shape[0] - input_shape[0]//2) # 48 | |
target_width = max(input_shape[1]//2, input_shape[1] - input_shape[1]//2) # 48 | |
# Padding the quadrants to match the target size (48, 48) | |
nw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - nw_quadrant.shape[1]), | |
(0, target_width - nw_quadrant.shape[2])))(nw_quadrant) | |
ne_quadrant = layers.ZeroPadding2D(padding=((0, target_height - ne_quadrant.shape[1]), | |
(0, target_width - ne_quadrant.shape[2])))(ne_quadrant) | |
sw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - sw_quadrant.shape[1]), | |
(0, target_width - sw_quadrant.shape[2])))(sw_quadrant) | |
se_quadrant = layers.ZeroPadding2D(padding=((0, target_height - se_quadrant.shape[1]), | |
(0, target_width - se_quadrant.shape[2])))(se_quadrant) | |
print(nw_quadrant.shape) | |
print(ne_quadrant.shape) | |
print(sw_quadrant.shape) | |
print(se_quadrant.shape) | |
# Main branch (processing the entire structure) | |
main_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(input_tensor) | |
y=layers.MaxPool2D()(main_branch) | |
y = layers.ZeroPadding2D(padding=((0, target_height - y.shape[1]), | |
(0, target_width - y.shape[2])))(y) | |
# Side branches (processing the individual quadrants) | |
nw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(nw_quadrant) | |
ne_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(ne_quadrant) | |
sw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(sw_quadrant) | |
se_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(se_quadrant) | |
# Apply padding to the side branches to match the dimensions of the main branch | |
# nw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(nw_branch) | |
# ne_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(ne_branch) | |
# sw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(sw_branch) | |
# se_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(se_branch) | |
# Fusion operations (concatenate the outputs from the main branch and side branches) | |
fusion = layers.concatenate([y, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) | |
# Additional convolution layer to combine the fused features | |
x = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(fusion) | |
x=layers.MaxPool2D(pool_size=(2, 2))(x) | |
# Final dense layer for further processing | |
nw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch) | |
ne_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch) | |
sw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch) | |
se_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(se_branch) | |
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch) | |
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch) | |
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch) | |
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch) | |
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) | |
x = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(fusion) | |
x=layers.MaxPool2D(pool_size=(2, 2))(x) | |
nw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch) | |
ne_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch) | |
sw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch) | |
se_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(se_branch) | |
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch) | |
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch) | |
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch) | |
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch) | |
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) | |
x = layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(fusion) | |
x=layers.Conv2D(filters=32, kernel_size=(3, 3), activation=None)(x) | |
# Create and return the model | |
x=layers.Flatten()(x) | |
model = models.Model(inputs=input_tensor, outputs=x) | |
return model | |
# Define input shape (batch_size, height, width, channels) | |
# input_shape = (95, 95, 8) # Example input shape (95x95 spatial resolution, 3 channels) | |
# # Build the model | |
# model = radial_structure_subnet(input_shape) | |
# # Model summary | |
# model.summary() | |
def build_cnn_model(input_shape=(8, 8, 1)): | |
# Define the input layer | |
input_tensor = layers.Input(shape=input_shape) | |
# Convolutional layer | |
x = layers.Conv2D(64, (3, 3), padding='same')(input_tensor) | |
x = layers.BatchNormalization()(x) | |
x = layers.ReLU()(x) | |
# Flatten layer | |
x = layers.Flatten()(x) | |
# Create the model | |
model = models.Model(inputs=input_tensor, outputs=x) | |
return model | |
from tensorflow.keras import layers, models, Input # type: ignore | |
def build_combined_model(): | |
# Define input shapes | |
input_shape_3d = (8, 95, 95, 2) | |
input_shape_radial = (95, 95, 8) | |
input_shape_cnn = (8, 8, 1) | |
input_shape_latitude = (8,) | |
input_shape_longitude = (8,) | |
input_shape_other = (9,) | |
# Build individual models | |
model_3d = build_st_lstm_model(input_shape=input_shape_3d) | |
model_radial = radial_structure_subnet(input_shape=input_shape_radial) | |
model_cnn = build_cnn_model(input_shape=input_shape_cnn) | |
# Define new inputs | |
input_latitude = Input(shape=input_shape_latitude ,name="latitude_input") | |
input_longitude = Input(shape=input_shape_longitude, name="longitude_input") | |
input_other = Input(shape=input_shape_other, name="other_input") | |
# Flatten the additional inputs | |
flat_latitude = layers.Dense(32,activation='relu')(input_latitude) | |
flat_longitude = layers.Dense(32,activation='relu')(input_longitude) | |
flat_other = layers.Dense(64,activation='relu')(input_other) | |
# Combine all outputs | |
combined = layers.concatenate([ | |
model_3d.output, | |
model_radial.output, | |
model_cnn.output, | |
flat_latitude, | |
flat_longitude, | |
flat_other | |
]) | |
# Add dense layers for final processing | |
x = layers.Dense(128, activation='relu')(combined) | |
x = layers.Dense(1, activation=None)(x) | |
# Create the final model | |
final_model = models.Model( | |
inputs=[model_3d.input, model_radial.input, model_cnn.input, | |
input_latitude, input_longitude, input_other ], | |
outputs=x | |
) | |
return final_model | |
import h5py | |
with h5py.File(r"spatio_tempral_LSTM.h5", 'r') as f: | |
print(f.attrs.get('keras_version')) | |
print(f.attrs.get('backend')) | |
print("Model layers:", list(f['model_weights'].keys())) | |
model = build_combined_model() # Your original model building function | |
model.load_weights(r"spatio_tempral_LSTM.h5") | |
def predict_stlstm(reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test): | |
y=model.predict([reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test ]) | |
return y |