UrangCompare / app.py
kayfahaarukku's picture
Update app.py
b4f0b46 verified
raw
history blame
6.6 kB
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
# Enable TQDM progress tracking
tqdm.monitor_interval = 0
# Load the diffusion pipelines
pipe1 = StableDiffusionXLPipeline.from_pretrained(
"kayfahaarukku/UrangDiffusion-1.4",
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
)
pipe1.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe1.scheduler.config)
pipe2 = StableDiffusionXLPipeline.from_pretrained(
"kayfahaarukku/UrangDiffusion-2.0",
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
)
pipe2.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe2.scheduler.config)
# Function to generate images from both models
@spaces.GPU
def generate_comparison(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
pipe1.to('cuda')
pipe2.to('cuda')
if randomize_seed:
seed = random.randint(0, 99999999)
if use_defaults:
prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
generator = torch.manual_seed(seed)
def callback(step, timestep, latents):
progress(step / (2 * num_inference_steps))
return
width, height = map(int, resolution.split('x'))
# Generate image with UrangDiffusion-1.4
image1 = pipe1(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1
).images[0]
# Generate image with UrangDiffusion-2.0
image2 = pipe2(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1
).images[0]
torch.cuda.empty_cache()
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
return image1, image2, seed, metadata_text
# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
image1, image2, seed, metadata_text = generate_comparison(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
return image1, image2, seed, gr.update(value=metadata_text)
def reset_inputs():
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')
with gr.Blocks(title="UrangDiffusion Comparison Demo", theme="NoCrypt/miku@1.2.1") as demo:
gr.HTML(
"<h1>UrangDiffusion 1.4 vs 2.0 Comparison Demo</h1>"
"This demo showcases a comparison between UrangDiffusion 1.4 and 2.0."
)
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7)
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("Generate Comparison")
reset_button = gr.Button("Reset")
with gr.Column():
with gr.Row():
output_image1 = gr.Image(type="pil", label="UrangDiffusion 1.4")
output_image2 = gr.Image(type="pil", label="UrangDiffusion 2.0")
with gr.Accordion("Parameters", open=False):
gr.Markdown(
"""
This parameter is compatible with Stable Diffusion WebUI's parameter importer.
"""
)
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
gr.Markdown(
"""
### Recommended prompt formatting:
`1girl/1boy, character name, from what series, everything else in any order, best quality, amazing quality, very aesthetic`
**PS:** `best quality, amazing quality, very aesthetic` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
### Recommended settings:
- Steps: 25-30
- CFG: 5-7
"""
)
generate_button.click(
interface_fn,
inputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
],
outputs=[output_image1, output_image2, seed_input, metadata_textbox]
)
reset_button.click(
reset_inputs,
inputs=[],
outputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
]
)
demo.queue(max_size=20).launch(share=False)