Spaces:
Runtime error
Runtime error
import os | |
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') | |
import warnings | |
warnings.filterwarnings("ignore") | |
import numpy as np | |
from transformers import AutoModelForTokenClassification | |
from datasets.features import ClassLabel | |
from transformers import AutoProcessor | |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D | |
import torch | |
from datasets import load_metric | |
from transformers import LayoutLMv3ForTokenClassification | |
from transformers.data.data_collator import default_data_collator | |
from transformers import AutoModelForTokenClassification | |
from datasets import load_dataset | |
from PIL import Image, ImageDraw, ImageFont | |
import pytesseract | |
pytesseract.pytesseract.tesseract_cmd = r'C:\\Program Files\\Tesseract-OCR\\tesseract.exe' | |
processor = AutoProcessor.from_pretrained("kaydee/layoutlmv3-wildreceipt", apply_ocr=True) | |
model = AutoModelForTokenClassification.from_pretrained("kaydee/layoutlmv3-wildreceipt") | |
dataset = load_dataset("kaydee/wildreceipt", split="test") | |
labels = dataset.features['ner_tags'].feature.names | |
id2label = {v: k for v, k in enumerate(labels)} | |
label2color = { | |
"Date_key": 'red', | |
"Date_value": 'green', | |
"Ignore": 'orange', | |
"Others": 'orange', | |
"Prod_item_key": 'red', | |
"Prod_item_value": 'green', | |
"Prod_price_key": 'red', | |
"Prod_price_value": 'green', | |
"Prod_quantity_key": 'red', | |
"Prod_quantity_value": 'green', | |
"Store_addr_key": 'red', | |
"Store_addr_value": 'green', | |
"Store_name_key": 'red', | |
"Store_name_value": 'green', | |
"Subtotal_key": 'red', | |
"Subtotal_value": 'green', | |
"Tax_key": 'red', | |
"Tax_value": 'green', | |
"Tel_key": 'red', | |
"Tel_value": 'green', | |
"Time_key": 'red', | |
"Time_value": 'green', | |
"Tips_key": 'red', | |
"Tips_value": 'green', | |
"Total_key": 'red', | |
"Total_value": 'blue' | |
} | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
def iob_to_label(label): | |
return label | |
def process_image(image): | |
print(type(image)) | |
width, height = image.size | |
# encode | |
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") | |
offset_mapping = encoding.pop('offset_mapping') | |
# forward pass | |
outputs = model(**encoding) | |
# get predictions | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
# only keep non-subword predictions | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
# draw predictions over the image | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = iob_to_label(prediction) | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
return image | |
def main(img): | |
image = process_image(img) | |
return image |