Spaces:
Build error
Build error
| import gradio as gr | |
| import os | |
| import torch | |
| from timeit import default_timer as timer | |
| from typing import Tuple, Dict | |
| from torchvision import transforms | |
| from models.model import TinyVGG | |
| # Setup class names | |
| with open("models/labels.txt", "r") as f: # reading them in from class_names.txt | |
| class_names = [urdu_character.strip() for urdu_character in f.readlines()] | |
| ### 2. Model and transforms preparation ### | |
| model_transform = transforms.Compose([ | |
| transforms.Resize((64, 64)), | |
| transforms.Grayscale(num_output_channels=1), | |
| transforms.ToTensor(), | |
| ]) | |
| # Recreate an instance of TinyVGG | |
| model_0 = TinyVGG(input_shape=1, # number of color channels (3 for RGB) | |
| hidden_units=10, | |
| output_shape=len(class_names)) | |
| # Load saved weights | |
| model_0.load_state_dict( | |
| torch.load( | |
| f='models/saved/01_pytorch_workflow_model_0.pth', | |
| map_location=torch.device("cpu"), # load to CPU | |
| ) | |
| ) | |
| ### 3. Predict function ### | |
| # Create predict function | |
| def predict(img) -> Tuple[Dict, float]: | |
| """Transforms and performs a prediction on img and returns prediction and time taken. | |
| """ | |
| # Start the timer | |
| start_time = timer() | |
| # Transform the target image and add a batch dimension | |
| img_transform = model_transform(img).unsqueeze(dim=0) | |
| # Put model into evaluation mode and turn on inference mode | |
| model_0.eval() | |
| with torch.inference_mode(): | |
| # Pass the transformed image through the model and turn the prediction logits into prediction probabilities | |
| pred_probs = torch.softmax(model_0(img_transform), dim=1) | |
| # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) | |
| pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
| # Calculate the prediction time | |
| pred_time = round(timer() - start_time, 5) | |
| # Return the prediction dictionary and prediction time | |
| return pred_labels_and_probs, pred_time | |
| ### 4. Gradio app ### | |
| # Create title, description and article strings | |
| title = "Urdu Characters Vision βͺοΈπ" | |
| description = "An TinyVGG feature extractor computer vision model to classify images of urdu characters [23 different classes]" | |
| # Create examples list from "static/" directory | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[ | |
| gr.Label(num_top_classes=5, label="Predictions"), | |
| gr.Number(label="Prediction time (s)"), | |
| ], | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| ) | |
| # Launch the app! | |
| demo.launch() |