HCU-ASR / app.py
kattojuprashanth238's picture
Update app.py
20472e0 verified
import gradio as gr
from transformers import pipeline
# Load the Hugging Face model pipeline (example: Automatic Speech Recognition)
model = pipeline("automatic-speech-recognition", model="kattojuprashanth238/whisper-small-te-v9")
def process_audio(audio):
"""
Process the audio input and return the transcription.
Args:
- audio: file path of the uploaded or recorded audio
Returns:
- Transcription text
"""
if audio is None:
return "No audio input provided."
try:
# Hugging Face model processing with long-form transcription
result = model(audio, return_timestamps=True)
transcription = result["text"]
return transcription
except Exception as e:
return f"Error processing audio: {str(e)}"
# Gradio interface
with gr.Blocks() as app:
gr.Markdown("## Audio Transcription Interface")
gr.Markdown("Record audio or upload an audio file to transcribe it.")
audio_input = gr.Audio(type="filepath", label="Record or Upload Audio")
output = gr.Textbox(label="Transcription Result")
# Submit button for processing
btn = gr.Button("Transcribe")
# Logic for the interface
btn.click(process_audio, inputs=audio_input, outputs=output)
# Launch the interface
app.launch()