amanu / transcription.py
katospiegel's picture
Little function to deal with no scoring
e9cf21b
raw
history blame
12.4 kB
#################################################################################################
# Taking code from https://huggingface.co/spaces/vumichien/Whisper_speaker_diarization/blob/main/app.py
from faster_whisper import WhisperModel
#import datetime
#import subprocess
import gradio as gr
from pathlib import Path
import pandas as pd
#import re
import time
import os
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
#from pytube import YouTube
#import yt_dlp
import torch
#import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
from gpuinfo import GPUInfo
import wave
import contextlib
from transformers import pipeline
import psutil
import whisperx
import gc
def doWhisperX(audio_file, whisper_model="large-v2", language="es"):
if language == "Cualquiera":
language = None
device = "cuda" if torch.cuda.is_available() else "cpu"
#audio_file = "audio.mp3"
batch_size = 16 # reduce if low on GPU mem
compute_type = "float16" # change to "int8" if low on GPU mem (may reduce accuracy)
# 1. Transcribe with original whisper (batched)
model = whisperx.load_model(whisper_model, device, compute_type=compute_type)
audio = whisperx.load_audio(audio_file)
result_whisper = model.transcribe(audio, language=language, batch_size=batch_size)
#print(result_whisper["segments"]) # before alignment
# delete model if low on GPU resources
# import gc; gc.collect(); torch.cuda.empty_cache(); del model
# 2. Align whisper output
model_a, metadata = whisperx.load_align_model(language_code=result_whisper["language"], device=device)
result_aligned = whisperx.align(result_whisper["segments"], model_a, metadata, audio, device, return_char_alignments=False)
#print(result_aligned) # after alignment
# delete model if low on GPU resources
# import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
# 3. Assign speaker labels
diarize_model = whisperx.DiarizationPipeline(use_auth_token=os.environ['HF_TOKEN'], device=device)
# add min/max number of speakers if known
diarize_segments = diarize_model(audio)
# diarize_model(audio, min_speakers=min_speakers, max_speakers=max_speakers)
result_speakers = whisperx.assign_word_speakers(diarize_segments, result_aligned)
#print(diarize_segments)
#print(result["segments"]) # segments are now assigned speaker IDs
return result_whisper, result_aligned, result_speakers, diarize_segments
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def fast_transcription(audio_file, whisper_model, language):
"""
# Transcribe youtube link using OpenAI Whisper
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
2. Generating speaker embeddings for each segments.
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
"""
# model = whisper.load_model(whisper_model)
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
model = WhisperModel(whisper_model, compute_type="int8")
time_start = time.time()
# if(video_file_path == None):
# raise ValueError("Error no video input")
# print(video_file_path)
try:
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"conversion to wav ready, duration of audio file: {duration}")
# Transcribe audio
options = dict(language=language, beam_size=5, best_of=5, word_timestamps=True)
transcribe_options = dict(task="transcribe", **options)
segments_generator, info = model.transcribe(audio_file, **transcribe_options)
#segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# # Convert back to original openai format
# segments = []
# i = 0
# for segment_chunk in segments_raw:
# chunk = {}
# chunk["start"] = segment_chunk.start
# chunk["end"] = segment_chunk.end
# chunk["text"] = segment_chunk.text
# segments.append(chunk)
# i += 1
# print("transcribe audio done with fast whisper")
segments = []
for segment in segments_generator:
segments.append(segment)
# if progress_listener is not None:
# progress_listener.on_progress(segment.end, info.duration)
# if verbose:
# print("[{}->{}] {}".format(format_timestamp(segment.start, True), format_timestamp(segment.end, True),
# segment.text))
text = " ".join([segment.text for segment in segments])
# Convert the segments to a format that is easier to serialize
whisper_segments = [{
"text": segment.text,
"start": segment.start,
"end": segment.end,
# Extra fields added by faster-whisper
"words": [{
"start": word.start,
"end": word.end,
"word": word.word,
"probability": word.probability
} for word in (segment.words if segment.words is not None else []) ]
} for segment in segments]
result = {
"segments": whisper_segments,
"text": text,
"language": info.language if info else None,
# Extra fields added by faster-whisper
"language_probability": info.language_probability if info else None,
"duration": info.duration if info else None
}
except Exception as e:
raise RuntimeError("Error converting video to audio")
#text from the list
return result
#return [str(s["start"]) + " " + s["text"] for s in segments] #pd.DataFrame(segments)
import datetime
def convert_time(secs):
return datetime.timedelta(seconds=round(secs))
def speech_to_text(audio_file, selected_source_lang, whisper_model, num_speakers):
"""
# Transcribe youtube link using OpenAI Whisper
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
2. Generating speaker embeddings for each segments.
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
"""
# model = whisper.load_model(whisper_model)
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
model = WhisperModel(whisper_model, compute_type="int8")
time_start = time.time()
# if(video_file_path == None):
# raise ValueError("Error no video input")
# print(video_file_path)
try:
# # Read and convert youtube video
# _,file_ending = os.path.splitext(f'{video_file_path}')
# print(f'file enging is {file_ending}')
# audio_file = video_file_path.replace(file_ending, ".wav")
# print("starting conversion to wav")
# os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"conversion to wav ready, duration of audio file: {duration}")
# Transcribe audio
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
transcribe_options = dict(task="transcribe", **options)
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# Convert back to original openai format
segments = []
i = 0
for segment_chunk in segments_raw:
chunk = {}
chunk["start"] = segment_chunk.start
chunk["end"] = segment_chunk.end
chunk["text"] = segment_chunk.text
segments.append(chunk)
i += 1
print("transcribe audio done with fast whisper")
except Exception as e:
raise RuntimeError("Error converting video to audio")
try:
# Create embedding
def segment_embedding(segment):
audio = Audio()
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(audio_file, clip)
return embedding_model(waveform[None])
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
print(f'Embedding shape: {embeddings.shape}')
if num_speakers == 0:
# Find the best number of speakers
score_num_speakers = {}
for num_speakers in range(2, 10+1):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
score_num_speakers[num_speakers] = score
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
else:
best_num_speaker = num_speakers
# Assign speaker label
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
# Make output
objects = {
'Start' : [],
'End': [],
'Speaker': [],
'Text': []
}
text = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
objects['Start'].append(str(convert_time(segment["start"])))
objects['Speaker'].append(segment["speaker"])
if i != 0:
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
text = ''
text += segment["text"] + ' '
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {time_diff:.5} seconds.*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
"""
save_path = "transcript_result.csv"
df_results = pd.DataFrame(objects)
#df_results.to_csv(save_path)
return df_results, system_info, save_path
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
# #######################################################################
# def fast_whisper(audio_file, whisper_model="large_v2", language="es"):
# return out