Spaces:
Build error
Build error
| import os | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from pathlib import Path | |
| from typing import Union | |
| class HighwayNetwork(nn.Module): | |
| def __init__(self, size): | |
| super().__init__() | |
| self.W1 = nn.Linear(size, size) | |
| self.W2 = nn.Linear(size, size) | |
| self.W1.bias.data.fill_(0.) | |
| def forward(self, x): | |
| x1 = self.W1(x) | |
| x2 = self.W2(x) | |
| g = torch.sigmoid(x2) | |
| y = g * F.relu(x1) + (1. - g) * x | |
| return y | |
| class Encoder(nn.Module): | |
| def __init__(self, embed_dims, num_chars, encoder_dims, K, num_highways, dropout): | |
| super().__init__() | |
| prenet_dims = (encoder_dims, encoder_dims) | |
| cbhg_channels = encoder_dims | |
| self.embedding = nn.Embedding(num_chars, embed_dims) | |
| self.pre_net = PreNet(embed_dims, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1], | |
| dropout=dropout) | |
| self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels, | |
| proj_channels=[cbhg_channels, cbhg_channels], | |
| num_highways=num_highways) | |
| def forward(self, x, speaker_embedding=None): | |
| x = self.embedding(x) | |
| x = self.pre_net(x) | |
| x.transpose_(1, 2) | |
| x = self.cbhg(x) | |
| if speaker_embedding is not None: | |
| x = self.add_speaker_embedding(x, speaker_embedding) | |
| return x | |
| def add_speaker_embedding(self, x, speaker_embedding): | |
| # SV2TTS | |
| # The input x is the encoder output and is a 3D tensor with size (batch_size, num_chars, tts_embed_dims) | |
| # When training, speaker_embedding is also a 2D tensor with size (batch_size, speaker_embedding_size) | |
| # (for inference, speaker_embedding is a 1D tensor with size (speaker_embedding_size)) | |
| # This concats the speaker embedding for each char in the encoder output | |
| # Save the dimensions as human-readable names | |
| batch_size = x.size()[0] | |
| num_chars = x.size()[1] | |
| if speaker_embedding.dim() == 1: | |
| idx = 0 | |
| else: | |
| idx = 1 | |
| # Start by making a copy of each speaker embedding to match the input text length | |
| # The output of this has size (batch_size, num_chars * tts_embed_dims) | |
| speaker_embedding_size = speaker_embedding.size()[idx] | |
| e = speaker_embedding.repeat_interleave(num_chars, dim=idx) | |
| # Reshape it and transpose | |
| e = e.reshape(batch_size, speaker_embedding_size, num_chars) | |
| e = e.transpose(1, 2) | |
| # Concatenate the tiled speaker embedding with the encoder output | |
| x = torch.cat((x, e), 2) | |
| return x | |
| class BatchNormConv(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel, relu=True): | |
| super().__init__() | |
| self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False) | |
| self.bnorm = nn.BatchNorm1d(out_channels) | |
| self.relu = relu | |
| def forward(self, x): | |
| x = self.conv(x) | |
| x = F.relu(x) if self.relu is True else x | |
| return self.bnorm(x) | |
| class CBHG(nn.Module): | |
| def __init__(self, K, in_channels, channels, proj_channels, num_highways): | |
| super().__init__() | |
| # List of all rnns to call `flatten_parameters()` on | |
| self._to_flatten = [] | |
| self.bank_kernels = [i for i in range(1, K + 1)] | |
| self.conv1d_bank = nn.ModuleList() | |
| for k in self.bank_kernels: | |
| conv = BatchNormConv(in_channels, channels, k) | |
| self.conv1d_bank.append(conv) | |
| self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1) | |
| self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3) | |
| self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False) | |
| # Fix the highway input if necessary | |
| if proj_channels[-1] != channels: | |
| self.highway_mismatch = True | |
| self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False) | |
| else: | |
| self.highway_mismatch = False | |
| self.highways = nn.ModuleList() | |
| for i in range(num_highways): | |
| hn = HighwayNetwork(channels) | |
| self.highways.append(hn) | |
| self.rnn = nn.GRU(channels, channels // 2, batch_first=True, bidirectional=True) | |
| self._to_flatten.append(self.rnn) | |
| # Avoid fragmentation of RNN parameters and associated warning | |
| self._flatten_parameters() | |
| def forward(self, x): | |
| # Although we `_flatten_parameters()` on init, when using DataParallel | |
| # the model gets replicated, making it no longer guaranteed that the | |
| # weights are contiguous in GPU memory. Hence, we must call it again | |
| self._flatten_parameters() | |
| # Save these for later | |
| residual = x | |
| seq_len = x.size(-1) | |
| conv_bank = [] | |
| # Convolution Bank | |
| for conv in self.conv1d_bank: | |
| c = conv(x) # Convolution | |
| conv_bank.append(c[:, :, :seq_len]) | |
| # Stack along the channel axis | |
| conv_bank = torch.cat(conv_bank, dim=1) | |
| # dump the last padding to fit residual | |
| x = self.maxpool(conv_bank)[:, :, :seq_len] | |
| # Conv1d projections | |
| x = self.conv_project1(x) | |
| x = self.conv_project2(x) | |
| # Residual Connect | |
| x = x + residual | |
| # Through the highways | |
| x = x.transpose(1, 2) | |
| if self.highway_mismatch is True: | |
| x = self.pre_highway(x) | |
| for h in self.highways: x = h(x) | |
| # And then the RNN | |
| x, _ = self.rnn(x) | |
| return x | |
| def _flatten_parameters(self): | |
| """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used | |
| to improve efficiency and avoid PyTorch yelling at us.""" | |
| [m.flatten_parameters() for m in self._to_flatten] | |
| class PreNet(nn.Module): | |
| def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5): | |
| super().__init__() | |
| self.fc1 = nn.Linear(in_dims, fc1_dims) | |
| self.fc2 = nn.Linear(fc1_dims, fc2_dims) | |
| self.p = dropout | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = F.relu(x) | |
| x = F.dropout(x, self.p, training=True) | |
| x = self.fc2(x) | |
| x = F.relu(x) | |
| x = F.dropout(x, self.p, training=True) | |
| return x | |
| class Attention(nn.Module): | |
| def __init__(self, attn_dims): | |
| super().__init__() | |
| self.W = nn.Linear(attn_dims, attn_dims, bias=False) | |
| self.v = nn.Linear(attn_dims, 1, bias=False) | |
| def forward(self, encoder_seq_proj, query, t): | |
| # print(encoder_seq_proj.shape) | |
| # Transform the query vector | |
| query_proj = self.W(query).unsqueeze(1) | |
| # Compute the scores | |
| u = self.v(torch.tanh(encoder_seq_proj + query_proj)) | |
| scores = F.softmax(u, dim=1) | |
| return scores.transpose(1, 2) | |
| class LSA(nn.Module): | |
| def __init__(self, attn_dim, kernel_size=31, filters=32): | |
| super().__init__() | |
| self.conv = nn.Conv1d(1, filters, padding=(kernel_size - 1) // 2, kernel_size=kernel_size, bias=True) | |
| self.L = nn.Linear(filters, attn_dim, bias=False) | |
| self.W = nn.Linear(attn_dim, attn_dim, bias=True) # Include the attention bias in this term | |
| self.v = nn.Linear(attn_dim, 1, bias=False) | |
| self.cumulative = None | |
| self.attention = None | |
| def init_attention(self, encoder_seq_proj): | |
| device = next(self.parameters()).device # use same device as parameters | |
| b, t, c = encoder_seq_proj.size() | |
| self.cumulative = torch.zeros(b, t, device=device) | |
| self.attention = torch.zeros(b, t, device=device) | |
| def forward(self, encoder_seq_proj, query, t, chars): | |
| if t == 0: self.init_attention(encoder_seq_proj) | |
| processed_query = self.W(query).unsqueeze(1) | |
| location = self.cumulative.unsqueeze(1) | |
| processed_loc = self.L(self.conv(location).transpose(1, 2)) | |
| u = self.v(torch.tanh(processed_query + encoder_seq_proj + processed_loc)) | |
| u = u.squeeze(-1) | |
| # Mask zero padding chars | |
| u = u * (chars != 0).float() | |
| # Smooth Attention | |
| # scores = torch.sigmoid(u) / torch.sigmoid(u).sum(dim=1, keepdim=True) | |
| scores = F.softmax(u, dim=1) | |
| self.attention = scores | |
| self.cumulative = self.cumulative + self.attention | |
| return scores.unsqueeze(-1).transpose(1, 2) | |
| class Decoder(nn.Module): | |
| # Class variable because its value doesn't change between classes | |
| # yet ought to be scoped by class because its a property of a Decoder | |
| max_r = 20 | |
| def __init__(self, n_mels, encoder_dims, decoder_dims, lstm_dims, | |
| dropout, speaker_embedding_size): | |
| super().__init__() | |
| self.register_buffer("r", torch.tensor(1, dtype=torch.int)) | |
| self.n_mels = n_mels | |
| prenet_dims = (decoder_dims * 2, decoder_dims * 2) | |
| self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1], | |
| dropout=dropout) | |
| self.attn_net = LSA(decoder_dims) | |
| self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size, decoder_dims) | |
| self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size, lstm_dims) | |
| self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims) | |
| self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims) | |
| self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False) | |
| self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims, 1) | |
| def zoneout(self, prev, current, p=0.1): | |
| device = next(self.parameters()).device # Use same device as parameters | |
| mask = torch.zeros(prev.size(), device=device).bernoulli_(p) | |
| return prev * mask + current * (1 - mask) | |
| def forward(self, encoder_seq, encoder_seq_proj, prenet_in, | |
| hidden_states, cell_states, context_vec, t, chars): | |
| # Need this for reshaping mels | |
| batch_size = encoder_seq.size(0) | |
| # Unpack the hidden and cell states | |
| attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states | |
| rnn1_cell, rnn2_cell = cell_states | |
| # PreNet for the Attention RNN | |
| prenet_out = self.prenet(prenet_in) | |
| # Compute the Attention RNN hidden state | |
| attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1) | |
| attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden) | |
| # Compute the attention scores | |
| scores = self.attn_net(encoder_seq_proj, attn_hidden, t, chars) | |
| # Dot product to create the context vector | |
| context_vec = scores @ encoder_seq | |
| context_vec = context_vec.squeeze(1) | |
| # Concat Attention RNN output w. Context Vector & project | |
| x = torch.cat([context_vec, attn_hidden], dim=1) | |
| x = self.rnn_input(x) | |
| # Compute first Residual RNN | |
| rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell)) | |
| if self.training: | |
| rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next) | |
| else: | |
| rnn1_hidden = rnn1_hidden_next | |
| x = x + rnn1_hidden | |
| # Compute second Residual RNN | |
| rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell)) | |
| if self.training: | |
| rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next) | |
| else: | |
| rnn2_hidden = rnn2_hidden_next | |
| x = x + rnn2_hidden | |
| # Project Mels | |
| mels = self.mel_proj(x) | |
| mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r] | |
| hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) | |
| cell_states = (rnn1_cell, rnn2_cell) | |
| # Stop token prediction | |
| s = torch.cat((x, context_vec), dim=1) | |
| s = self.stop_proj(s) | |
| stop_tokens = torch.sigmoid(s) | |
| return mels, scores, hidden_states, cell_states, context_vec, stop_tokens | |
| class Tacotron(nn.Module): | |
| def __init__(self, embed_dims, num_chars, encoder_dims, decoder_dims, n_mels, | |
| fft_bins, postnet_dims, encoder_K, lstm_dims, postnet_K, num_highways, | |
| dropout, stop_threshold, speaker_embedding_size): | |
| super().__init__() | |
| self.n_mels = n_mels | |
| self.lstm_dims = lstm_dims | |
| self.encoder_dims = encoder_dims | |
| self.decoder_dims = decoder_dims | |
| self.speaker_embedding_size = speaker_embedding_size | |
| self.encoder = Encoder(embed_dims, num_chars, encoder_dims, | |
| encoder_K, num_highways, dropout) | |
| self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size, decoder_dims, bias=False) | |
| self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims, | |
| dropout, speaker_embedding_size) | |
| self.postnet = CBHG(postnet_K, n_mels, postnet_dims, | |
| [postnet_dims, fft_bins], num_highways) | |
| self.post_proj = nn.Linear(postnet_dims, fft_bins, bias=False) | |
| self.init_model() | |
| self.num_params() | |
| self.register_buffer("step", torch.zeros(1, dtype=torch.long)) | |
| self.register_buffer("stop_threshold", torch.tensor(stop_threshold, dtype=torch.float32)) | |
| def r(self): | |
| return self.decoder.r.item() | |
| def r(self, value): | |
| self.decoder.r = self.decoder.r.new_tensor(value, requires_grad=False) | |
| def forward(self, x, m, speaker_embedding): | |
| device = next(self.parameters()).device # use same device as parameters | |
| self.step += 1 | |
| batch_size, _, steps = m.size() | |
| # Initialise all hidden states and pack into tuple | |
| attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device) | |
| rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) | |
| # Initialise all lstm cell states and pack into tuple | |
| rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| cell_states = (rnn1_cell, rnn2_cell) | |
| # <GO> Frame for start of decoder loop | |
| go_frame = torch.zeros(batch_size, self.n_mels, device=device) | |
| # Need an initial context vector | |
| context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device) | |
| # SV2TTS: Run the encoder with the speaker embedding | |
| # The projection avoids unnecessary matmuls in the decoder loop | |
| encoder_seq = self.encoder(x, speaker_embedding) | |
| encoder_seq_proj = self.encoder_proj(encoder_seq) | |
| # Need a couple of lists for outputs | |
| mel_outputs, attn_scores, stop_outputs = [], [], [] | |
| # Run the decoder loop | |
| for t in range(0, steps, self.r): | |
| prenet_in = m[:, :, t - 1] if t > 0 else go_frame | |
| mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \ | |
| self.decoder(encoder_seq, encoder_seq_proj, prenet_in, | |
| hidden_states, cell_states, context_vec, t, x) | |
| mel_outputs.append(mel_frames) | |
| attn_scores.append(scores) | |
| stop_outputs.extend([stop_tokens] * self.r) | |
| # Concat the mel outputs into sequence | |
| mel_outputs = torch.cat(mel_outputs, dim=2) | |
| # Post-Process for Linear Spectrograms | |
| postnet_out = self.postnet(mel_outputs) | |
| linear = self.post_proj(postnet_out) | |
| linear = linear.transpose(1, 2) | |
| # For easy visualisation | |
| attn_scores = torch.cat(attn_scores, 1) | |
| # attn_scores = attn_scores.cpu().data.numpy() | |
| stop_outputs = torch.cat(stop_outputs, 1) | |
| return mel_outputs, linear, attn_scores, stop_outputs | |
| def generate(self, x, speaker_embedding=None, steps=2000): | |
| self.eval() | |
| device = next(self.parameters()).device # use same device as parameters | |
| batch_size, _ = x.size() | |
| # Need to initialise all hidden states and pack into tuple for tidyness | |
| attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device) | |
| rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden) | |
| # Need to initialise all lstm cell states and pack into tuple for tidyness | |
| rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device) | |
| cell_states = (rnn1_cell, rnn2_cell) | |
| # Need a <GO> Frame for start of decoder loop | |
| go_frame = torch.zeros(batch_size, self.n_mels, device=device) | |
| # Need an initial context vector | |
| context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device) | |
| # SV2TTS: Run the encoder with the speaker embedding | |
| # The projection avoids unnecessary matmuls in the decoder loop | |
| encoder_seq = self.encoder(x, speaker_embedding) | |
| encoder_seq_proj = self.encoder_proj(encoder_seq) | |
| # Need a couple of lists for outputs | |
| mel_outputs, attn_scores, stop_outputs = [], [], [] | |
| # Run the decoder loop | |
| for t in range(0, steps, self.r): | |
| prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame | |
| mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \ | |
| self.decoder(encoder_seq, encoder_seq_proj, prenet_in, | |
| hidden_states, cell_states, context_vec, t, x) | |
| mel_outputs.append(mel_frames) | |
| attn_scores.append(scores) | |
| stop_outputs.extend([stop_tokens] * self.r) | |
| # Stop the loop when all stop tokens in batch exceed threshold | |
| if (stop_tokens > 0.5).all() and t > 10: break | |
| # Concat the mel outputs into sequence | |
| mel_outputs = torch.cat(mel_outputs, dim=2) | |
| # Post-Process for Linear Spectrograms | |
| postnet_out = self.postnet(mel_outputs) | |
| linear = self.post_proj(postnet_out) | |
| linear = linear.transpose(1, 2) | |
| # For easy visualisation | |
| attn_scores = torch.cat(attn_scores, 1) | |
| stop_outputs = torch.cat(stop_outputs, 1) | |
| self.train() | |
| return mel_outputs, linear, attn_scores | |
| def init_model(self): | |
| for p in self.parameters(): | |
| if p.dim() > 1: nn.init.xavier_uniform_(p) | |
| def get_step(self): | |
| return self.step.data.item() | |
| def reset_step(self): | |
| # assignment to parameters or buffers is overloaded, updates internal dict entry | |
| self.step = self.step.data.new_tensor(1) | |
| def log(self, path, msg): | |
| with open(path, "a") as f: | |
| print(msg, file=f) | |
| def load(self, path, optimizer=None): | |
| # Use device of model params as location for loaded state | |
| device = next(self.parameters()).device | |
| checkpoint = torch.load(str(path), map_location=device) | |
| self.load_state_dict(checkpoint["model_state"]) | |
| if "optimizer_state" in checkpoint and optimizer is not None: | |
| optimizer.load_state_dict(checkpoint["optimizer_state"]) | |
| def save(self, path, optimizer=None): | |
| if optimizer is not None: | |
| torch.save({ | |
| "model_state": self.state_dict(), | |
| "optimizer_state": optimizer.state_dict(), | |
| }, str(path)) | |
| else: | |
| torch.save({ | |
| "model_state": self.state_dict(), | |
| }, str(path)) | |
| def num_params(self, print_out=True): | |
| parameters = filter(lambda p: p.requires_grad, self.parameters()) | |
| parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 | |
| if print_out: | |
| print("Trainable Parameters: %.3fM" % parameters) | |
| return parameters | |