kasun commited on
Commit
b5b12e8
1 Parent(s): 1e1dd5f

limited to only git large and blip large

Browse files
Files changed (1) hide show
  1. app.py +23 -22
app.py CHANGED
@@ -11,17 +11,17 @@ torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/0000000397
11
  torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
12
  torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
13
 
14
- git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
15
- git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
16
 
17
  git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
18
  git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
19
 
20
- git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
21
- git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
22
 
23
- blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
24
- blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
25
 
26
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
27
  blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
@@ -32,9 +32,9 @@ blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip
32
  # blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
33
  # blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
34
 
35
- vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
36
- vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
37
- vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
38
 
39
  # coca_model, _, coca_transform = open_clip.create_model_and_transforms(
40
  # model_name="coca_ViT-L-14",
@@ -43,12 +43,12 @@ vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-capt
43
 
44
  device = "cuda" if torch.cuda.is_available() else "cpu"
45
 
46
- git_model_base.to(device)
47
- blip_model_base.to(device)
48
  git_model_large_coco.to(device)
49
- git_model_large_textcaps.to(device)
50
  blip_model_large.to(device)
51
- vitgpt_model.to(device)
52
  # coca_model.to(device)
53
  # blip2_model.to(device)
54
 
@@ -76,17 +76,17 @@ def generate_caption_coca(model, transform, image):
76
 
77
 
78
  def generate_captions(image):
79
- caption_git_base = generate_caption(git_processor_base, git_model_base, image)
80
 
81
  caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
82
 
83
- caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
84
 
85
- caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
86
 
87
  caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
88
 
89
- caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
90
 
91
  # caption_coca = generate_caption_coca(coca_model, coca_transform, image)
92
 
@@ -95,18 +95,19 @@ def generate_captions(image):
95
  # caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
96
 
97
  # return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
98
- return caption_git_base, caption_git_large_coco, caption_git_large_textcaps, caption_blip_base, caption_blip_large, caption_vitgpt
99
 
100
 
101
 
102
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
103
  # outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
104
- outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base fine-tuned on COCO"),
 
105
  gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"),
106
- gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"),
107
- gr.outputs.Textbox(label="Caption generated by BLIP-base"),
108
  gr.outputs.Textbox(label="Caption generated by BLIP-large"),
109
- gr.outputs.Textbox(label="Caption generated by vitgpt")
110
  ]
111
 
112
  title = "Interactive demo: comparing image captioning models"
 
11
  torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
12
  torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
13
 
14
+ # git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco")
15
+ # git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
16
 
17
  git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
18
  git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
19
 
20
+ # git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
21
+ # git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
22
 
23
+ # blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
24
+ # blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
25
 
26
  blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
27
  blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
 
32
  # blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
33
  # blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
34
 
35
+ # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
36
+ # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
37
+ # vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
38
 
39
  # coca_model, _, coca_transform = open_clip.create_model_and_transforms(
40
  # model_name="coca_ViT-L-14",
 
43
 
44
  device = "cuda" if torch.cuda.is_available() else "cpu"
45
 
46
+ # git_model_base.to(device)
47
+ # blip_model_base.to(device)
48
  git_model_large_coco.to(device)
49
+ # git_model_large_textcaps.to(device)
50
  blip_model_large.to(device)
51
+ # vitgpt_model.to(device)
52
  # coca_model.to(device)
53
  # blip2_model.to(device)
54
 
 
76
 
77
 
78
  def generate_captions(image):
79
+ # caption_git_base = generate_caption(git_processor_base, git_model_base, image)
80
 
81
  caption_git_large_coco = generate_caption(git_processor_large_coco, git_model_large_coco, image)
82
 
83
+ # caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
84
 
85
+ # caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
86
 
87
  caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
88
 
89
+ # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
90
 
91
  # caption_coca = generate_caption_coca(coca_model, coca_transform, image)
92
 
 
95
  # caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
96
 
97
  # return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
98
+ return caption_git_large_coco, caption_blip_large
99
 
100
 
101
 
102
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
103
  # outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
104
+ outputs = [
105
+ # gr.outputs.Textbox(label="Caption generated by GIT-base fine-tuned on COCO"),
106
  gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"),
107
+ # gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"),
108
+ # gr.outputs.Textbox(label="Caption generated by BLIP-base"),
109
  gr.outputs.Textbox(label="Caption generated by BLIP-large"),
110
+ # gr.outputs.Textbox(label="Caption generated by vitgpt")
111
  ]
112
 
113
  title = "Interactive demo: comparing image captioning models"