kasun commited on
Commit
a5ad655
1 Parent(s): 6381706

disabled models except blip2

Browse files
Files changed (1) hide show
  1. app.py +16 -14
app.py CHANGED
@@ -1,5 +1,7 @@
1
  import gradio as gr
2
- from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
 
 
3
  import torch
4
  import open_clip
5
 
@@ -18,17 +20,17 @@ torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/as
18
  # git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
19
  # git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
20
 
21
- # blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
22
- # blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
23
 
24
- blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
25
- blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
26
 
27
  # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
  # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
30
- blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
31
- blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
32
 
33
  # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
34
  # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
@@ -42,10 +44,10 @@ blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/bl
42
  device = "cuda" if torch.cuda.is_available() else "cpu"
43
 
44
  # git_model_base.to(device)
45
- # blip_model_base.to(device)
46
  # git_model_large_coco.to(device)
47
  # git_model_large_textcaps.to(device)
48
- blip_model_large.to(device)
49
  # vitgpt_model.to(device)
50
  # coca_model.to(device)
51
  # blip2_model.to(device)
@@ -80,9 +82,9 @@ def generate_captions(image):
80
 
81
  # caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
82
 
83
- # caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
84
 
85
- caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
86
 
87
  # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
88
 
@@ -90,16 +92,16 @@ def generate_captions(image):
90
 
91
  # caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
92
 
93
- caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
94
 
95
  # return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
96
- return caption_blip_large, caption_blip2_8_bit
97
 
98
 
99
 
100
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
101
  # outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
102
- outputs = [gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
103
 
104
  title = "Interactive demo: comparing image captioning models"
105
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, BlipForConditionalGeneration
3
+
4
+ # from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
5
  import torch
6
  import open_clip
7
 
 
20
  # git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
21
  # git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
22
 
23
+ blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
24
+ blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
25
 
26
+ # blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
27
+ # blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
28
 
29
  # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
30
  # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
31
 
32
+ # blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
33
+ # blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
34
 
35
  # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
36
  # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
 
44
  device = "cuda" if torch.cuda.is_available() else "cpu"
45
 
46
  # git_model_base.to(device)
47
+ blip_model_base.to(device)
48
  # git_model_large_coco.to(device)
49
  # git_model_large_textcaps.to(device)
50
+ # blip_model_large.to(device)
51
  # vitgpt_model.to(device)
52
  # coca_model.to(device)
53
  # blip2_model.to(device)
 
82
 
83
  # caption_git_large_textcaps = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
84
 
85
+ caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image)
86
 
87
+ # caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
88
 
89
  # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
90
 
 
92
 
93
  # caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
94
 
95
+ # caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
96
 
97
  # return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2_8_bit
98
+ return caption_blip_base
99
 
100
 
101
 
102
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
103
  # outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
104
+ outputs = [gr.outputs.Textbox(label="Caption generated by BLIP-base"),]
105
 
106
  title = "Interactive demo: comparing image captioning models"
107
  description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."