|
import torch |
|
import gradio as gr |
|
from PIL import Image |
|
from diffusers import StableDiffusionPipeline |
|
|
|
|
|
from transformers import pipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
caption_image = pipeline("image-to-text", |
|
model="Salesforce/blip-image-captioning-large", device=device) |
|
|
|
|
|
def image_generation(prompt): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipeline = StableDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-3-medium", |
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32, |
|
) |
|
|
|
pipeline.enable_model_cpu_offload() |
|
|
|
image = pipeline( |
|
prompt=prompt + " 8K, Ultra HD", |
|
negative_prompt="blurred, ugly, watermark, low resolution, blurry, nude", |
|
num_inference_steps=40, |
|
height=1024, |
|
width=1024, |
|
guidance_scale=9.0 |
|
).images[0] |
|
|
|
return image |
|
|
|
def caption_my_image(pil_image): |
|
semantics = caption_image(images=pil_image)[0]['generated_text'] |
|
images = image_generation(semantics) |
|
return images |
|
|
|
demo = gr.Interface(fn=caption_my_image, |
|
inputs=[gr.Image(label="Select Image",type="pil")], |
|
outputs=[gr.Image(label="New Image genrated using SD3",type="pil")], |
|
title="PicTalker | ImageNarrator | SnapSpeech | SpeakScene", |
|
description="π Transform Ordinary Photos into Extraordinary Art!") |
|
demo.launch() |