Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| import json | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| # Initialize the translation pipeline | |
| text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) | |
| # Load the JSON data from the file | |
| with open('language.json', 'r') as file: | |
| language_data = json.load(file) | |
| # Extract language names from the JSON data | |
| language_names = [entry['Language'] for entry in language_data] | |
| def get_FLORES_code_from_language(language): | |
| for entry in language_data: | |
| if entry['Language'].lower() == language.lower(): | |
| return entry['FLORES-200 code'] | |
| return None | |
| def translate_text(text, destination_language): | |
| dest_code = get_FLORES_code_from_language(destination_language) | |
| if dest_code: | |
| translation = text_translator(text, src_lang="eng_Latn", tgt_lang=dest_code) | |
| return translation[0]["translation_text"] | |
| else: | |
| return "Destination language code not found." | |
| # Create and launch the Gradio interface | |
| gr.close_all() | |
| demo = gr.Interface( | |
| fn=translate_text, | |
| inputs=[ | |
| gr.Textbox(label="Input text to translate", lines=6), | |
| gr.Dropdown(language_names, label="Select Destination Language") | |
| ], | |
| outputs=[gr.Textbox(label="Translated text", lines=4)], | |
| title="Multi-language Translator", | |
| description="This application translates any English text to multiple languages." | |
| ) | |
| demo.launch() | |