Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
import json | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", | |
torch_dtype=torch.bfloat16) | |
# Load the JSON data from the file | |
with open('language.json', 'r') as file: | |
language_data = json.load(file) | |
def get_FLORES_code_from_language(language): | |
for entry in language_data: | |
if entry['Language'].lower() == language.lower(): | |
return entry['FLORES-200 code'] | |
return None | |
def translate_text(text, destination_language): | |
# text = "Hello Friends, How are you?" | |
dest_code= get_FLORES_code_from_language(destination_language) | |
translation = text_translator(text, | |
src_lang="eng_Latn", | |
tgt_lang=dest_code) | |
return translation[0]["translation_text"] | |
gr.close_all() | |
# demo = gr.Interface(fn=summary, inputs="text",outputs="text") | |
demo = gr.Interface(fn=translate_text, | |
inputs=[gr.Textbox(label="Input text to translate",lines=6), gr.Dropdown(["German","French", "Hindi", "Romanian "], label="Select Destination Language")], | |
outputs=[gr.Textbox(label="Translated text",lines=4)], | |
title="@GenAILearniverse Project 4: Multi language translator", | |
description="THIS APPLICATION WILL BE USED TO TRNSLATE ANY ENGLIST TEXT TO MULTIPLE LANGUAGES.") | |
demo.launch() |