Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- README.md +3 -8
- app.py +675 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,12 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
title: Copy
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: green
|
| 5 |
-
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.49.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Copy of final
|
| 3 |
+
emoji: 🚀
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
+
# Copy of final
|
app.py
ADDED
|
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copy of final
|
| 2 |
+
|
| 3 |
+
# ================================================================
|
| 4 |
+
# = STEP 1: SETUP AND DOWNLOAD (YOUR PROVEN METHOD) =
|
| 5 |
+
# ================================================================
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
print("--- 1. Installing All Libraries ---")
|
| 9 |
+
print("✅ Libraries installed.")
|
| 10 |
+
|
| 11 |
+
print("\n--- 2. Cloning IndicLID Repository ---")
|
| 12 |
+
# Using your proven method of changing directories
|
| 13 |
+
print("✅ Repository cloned.")
|
| 14 |
+
|
| 15 |
+
# Navigate into the correct directory structure
|
| 16 |
+
|
| 17 |
+
print("\n--- 3. Downloading and Unzipping IndicLID Models ---")
|
| 18 |
+
print("✅ Download commands executed. Unzipping now...")
|
| 19 |
+
print("✅ Unzip commands executed.")
|
| 20 |
+
|
| 21 |
+
print("\n🎉🎉🎉 SETUP COMPLETE. You can now proceed to Step 2. 🎉🎉🎉")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# =========================
|
| 25 |
+
# = STEP 2: INITIALIZE MODELS (EXACTLY AS YOUR OLD CODE) =
|
| 26 |
+
# =========================
|
| 27 |
+
import os
|
| 28 |
+
import sys
|
| 29 |
+
import torch
|
| 30 |
+
print("--- Applying your original add_safe_globals fix... ---")
|
| 31 |
+
|
| 32 |
+
if "/content/IndicLID/Inference" not in sys.path:
|
| 33 |
+
sys.path.append("/content/IndicLID/Inference")
|
| 34 |
+
|
| 35 |
+
from transformers.models.bert.modeling_bert import (
|
| 36 |
+
BertModel, BertPreTrainedModel, BertForSequenceClassification,
|
| 37 |
+
BertEmbeddings, BertEncoder, BertPooler, BertLayer, BertAttention,
|
| 38 |
+
BertSelfAttention, BertSelfOutput, BertIntermediate, BertOutput
|
| 39 |
+
)
|
| 40 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
| 41 |
+
import torch.nn as nn
|
| 42 |
+
from torch.nn.modules.sparse import Embedding
|
| 43 |
+
from torch.nn.modules.container import ModuleList
|
| 44 |
+
from torch.nn.modules.linear import Linear
|
| 45 |
+
from torch.nn.modules.normalization import LayerNorm
|
| 46 |
+
from torch.nn.modules.dropout import Dropout
|
| 47 |
+
|
| 48 |
+
torch.serialization.add_safe_globals([
|
| 49 |
+
BertModel, BertPreTrainedModel, BertForSequenceClassification,
|
| 50 |
+
BertEmbeddings, BertEncoder, BertPooler, BertLayer, BertAttention,
|
| 51 |
+
BertSelfAttention, BertSelfOutput, BertIntermediate, BertOutput, BertConfig,
|
| 52 |
+
Embedding, ModuleList, Linear, LayerNorm, Dropout,
|
| 53 |
+
])
|
| 54 |
+
print("✅ Comprehensive safe globals added successfully.")
|
| 55 |
+
|
| 56 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 57 |
+
from IndicTransToolkit.processor import IndicProcessor
|
| 58 |
+
from ai4bharat.IndicLID import IndicLID
|
| 59 |
+
|
| 60 |
+
print("--- Loading all models into memory... ---")
|
| 61 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 62 |
+
print(f"Using device: {device}")
|
| 63 |
+
|
| 64 |
+
lid = IndicLID(input_threshold=0.5, roman_lid_threshold=0.6)
|
| 65 |
+
print("✅ IndicLID model loaded successfully.")
|
| 66 |
+
|
| 67 |
+
MODEL_ID = "ai4bharat/indictrans2-indic-en-1B"
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 69 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID, trust_remote_code=True).to(device)
|
| 70 |
+
ip = IndicProcessor(inference=True)
|
| 71 |
+
print("✅ IndicTrans2 1B model loaded.")
|
| 72 |
+
|
| 73 |
+
print("🎉 ALL MODELS ARE LOADED. Proceed to direct batch prediction tests.")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
import sys
|
| 77 |
+
print(sys.path)
|
| 78 |
+
|
| 79 |
+
pip show transformers
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# ================================================================
|
| 84 |
+
# = STEP 2.5: LOAD ROMANSETU (COMPATIBLE WITH 4.40.2) =
|
| 85 |
+
# ================================================================
|
| 86 |
+
|
| 87 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 88 |
+
import torch
|
| 89 |
+
|
| 90 |
+
print("--- Loading RomanSetu model compatible with transformers 4.40.2... ---")
|
| 91 |
+
|
| 92 |
+
# Try smaller, more compatible models first
|
| 93 |
+
model_options = [
|
| 94 |
+
"ai4bharat/romansetu-cpt-roman-100m",
|
| 95 |
+
"ai4bharat/romansetu-cpt-roman-200m"
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
rs_model = None
|
| 99 |
+
rs_tokenizer = None
|
| 100 |
+
|
| 101 |
+
for model_id in model_options:
|
| 102 |
+
try:
|
| 103 |
+
print(f"Trying model: {model_id}")
|
| 104 |
+
rs_tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 105 |
+
rs_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
| 106 |
+
print(f"✅ {model_id} loaded successfully.")
|
| 107 |
+
break
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"❌ {model_id} failed: {e}")
|
| 110 |
+
continue
|
| 111 |
+
|
| 112 |
+
if rs_model is None:
|
| 113 |
+
print("❌ All RomanSetu models failed. Continuing with transliteration-based approach.")
|
| 114 |
+
|
| 115 |
+
def translate_with_romansetu(text, max_new_tokens=50):
|
| 116 |
+
if rs_model is None:
|
| 117 |
+
# Fallback: use enhanced transliteration + IndicTrans2
|
| 118 |
+
from indic_transliteration import sanscript
|
| 119 |
+
from indic_transliteration.sanscript import transliterate
|
| 120 |
+
try:
|
| 121 |
+
# Try to transliterate and then translate with IndicTrans2
|
| 122 |
+
native_text = transliterate(text, sanscript.ITRANS, sanscript.DEVANAGARI)
|
| 123 |
+
pre = ip.preprocess_batch([native_text], src_lang="hin_Deva", tgt_lang="eng_Latn")
|
| 124 |
+
inputs = tokenizer(pre, return_tensors="pt", padding=True).to(device)
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
out = model.generate(**inputs, num_beams=3, max_length=100)
|
| 127 |
+
dec = tokenizer.batch_decode(out, skip_special_tokens=True)
|
| 128 |
+
post = ip.postprocess_batch(dec, lang="hin_Deva")
|
| 129 |
+
return post[0]
|
| 130 |
+
except:
|
| 131 |
+
return text
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
prompt = f"Translate this romanized Indian text to English: {text}"
|
| 135 |
+
inputs = rs_tokenizer(prompt, return_tensors="pt").to(device)
|
| 136 |
+
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
outputs = rs_model.generate(
|
| 139 |
+
inputs.input_ids,
|
| 140 |
+
max_new_tokens=max_new_tokens,
|
| 141 |
+
num_beams=2,
|
| 142 |
+
temperature=0.7,
|
| 143 |
+
do_sample=True,
|
| 144 |
+
pad_token_id=rs_tokenizer.eos_token_id
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
full_response = rs_tokenizer.decode(outputs, skip_special_tokens=True)
|
| 148 |
+
translation = full_response.replace(prompt, "").strip()
|
| 149 |
+
return translation if translation and len(translation) > 2 else text
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
return text
|
| 153 |
+
|
| 154 |
+
print("✅ RomanSetu/fallback translation function defined.")
|
| 155 |
+
print("🎉 SETUP COMPLETE with fallback mechanism.")
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# ================================================================
|
| 159 |
+
# = STEP 2.6: LOAD INDICXLIT FOR BETTER TRANSLITERATION (CORRECTED) =
|
| 160 |
+
# ================================================================
|
| 161 |
+
|
| 162 |
+
print("--- Installing and loading IndicXlit for better romanized text handling ---")
|
| 163 |
+
|
| 164 |
+
# Install IndicXlit (compatible with your transformers==4.40.2)
|
| 165 |
+
|
| 166 |
+
from ai4bharat.transliteration import XlitEngine
|
| 167 |
+
import torch
|
| 168 |
+
|
| 169 |
+
try:
|
| 170 |
+
# Load IndicXlit engines for different languages (based on official docs)
|
| 171 |
+
xlit_engines = {
|
| 172 |
+
"hindi": XlitEngine("hi", beam_width=4, rescore=True),
|
| 173 |
+
"bengali": XlitEngine("bn", beam_width=4, rescore=True),
|
| 174 |
+
"tamil": XlitEngine("ta", beam_width=4, rescore=True),
|
| 175 |
+
"telugu": XlitEngine("te", beam_width=4, rescore=True),
|
| 176 |
+
"gujarati": XlitEngine("gu", beam_width=4, rescore=True),
|
| 177 |
+
"kannada": XlitEngine("kn", beam_width=4, rescore=True),
|
| 178 |
+
"malayalam": XlitEngine("ml", beam_width=4, rescore=True),
|
| 179 |
+
"punjabi": XlitEngine("pa", beam_width=4, rescore=True),
|
| 180 |
+
"marathi": XlitEngine("mr", beam_width=4, rescore=True),
|
| 181 |
+
"urdu": XlitEngine("ur", beam_width=4, rescore=True),
|
| 182 |
+
}
|
| 183 |
+
print("✅ Multiple IndicXlit engines loaded successfully.")
|
| 184 |
+
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"❌ Error loading IndicXlit: {e}")
|
| 187 |
+
print("💡 Falling back to basic transliteration.")
|
| 188 |
+
xlit_engines = {}
|
| 189 |
+
|
| 190 |
+
def enhanced_transliterate_with_xlit(text, target_lang):
|
| 191 |
+
"""
|
| 192 |
+
Enhanced transliteration using IndicXlit (based on official API)
|
| 193 |
+
"""
|
| 194 |
+
lang_key = target_lang.lower()
|
| 195 |
+
|
| 196 |
+
if not xlit_engines or lang_key not in xlit_engines:
|
| 197 |
+
# Fallback to your existing transliteration
|
| 198 |
+
from indic_transliteration import sanscript
|
| 199 |
+
from indic_transliteration.sanscript import transliterate
|
| 200 |
+
script_map = {
|
| 201 |
+
"hindi": sanscript.DEVANAGARI, "bengali": sanscript.BENGALI,
|
| 202 |
+
"tamil": sanscript.TAMIL, "telugu": sanscript.TELUGU,
|
| 203 |
+
"kannada": sanscript.KANNADA, "malayalam": sanscript.MALAYALAM,
|
| 204 |
+
"gujarati": sanscript.GUJARATI, "punjabi": sanscript.GURMUKHI,
|
| 205 |
+
"marathi": sanscript.DEVANAGARI, "urdu": 'urdu'
|
| 206 |
+
}
|
| 207 |
+
return transliterate(text, sanscript.ITRANS, script_map.get(lang_key, sanscript.DEVANAGARI))
|
| 208 |
+
|
| 209 |
+
try:
|
| 210 |
+
# Use IndicXlit for better transliteration (official API)
|
| 211 |
+
engine = xlit_engines[lang_key]
|
| 212 |
+
|
| 213 |
+
# For sentences, use translit_sentence (returns dict with lang code as key)
|
| 214 |
+
if ' ' in text:
|
| 215 |
+
result = engine.translit_sentence(text)
|
| 216 |
+
# Get the language code for this engine
|
| 217 |
+
lang_codes = {"hindi": "hi", "bengali": "bn", "tamil": "ta", "telugu": "te",
|
| 218 |
+
"gujarati": "gu", "kannada": "kn", "malayalam": "ml",
|
| 219 |
+
"punjabi": "pa", "marathi": "mr", "urdu": "ur"}
|
| 220 |
+
lang_code = lang_codes.get(lang_key, "hi")
|
| 221 |
+
return result.get(lang_code, text)
|
| 222 |
+
else:
|
| 223 |
+
# For single words, use translit_word (returns dict with topk results)
|
| 224 |
+
result = engine.translit_word(text, topk=1)
|
| 225 |
+
lang_codes = {"hindi": "hi", "bengali": "bn", "tamil": "ta", "telugu": "te",
|
| 226 |
+
"gujarati": "gu", "kannada": "kn", "malayalam": "ml",
|
| 227 |
+
"punjabi": "pa", "marathi": "mr", "urdu": "ur"}
|
| 228 |
+
lang_code = lang_codes.get(lang_key, "hi")
|
| 229 |
+
return result.get(lang_code, [text])[0]
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"IndicXlit error for '{text}': {e}")
|
| 233 |
+
# Fallback if IndicXlit fails
|
| 234 |
+
return text
|
| 235 |
+
|
| 236 |
+
print("✅ Enhanced transliteration function defined.")
|
| 237 |
+
print("🎉 INDICXLIT SETUP COMPLETE.")
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
import pandas as pd
|
| 241 |
+
from indic_transliteration import sanscript
|
| 242 |
+
from indic_transliteration.sanscript import transliterate
|
| 243 |
+
|
| 244 |
+
# EXPANDED language mapping to handle misdetections
|
| 245 |
+
LID_TO_TRANSLATE = {
|
| 246 |
+
# Hindi variants
|
| 247 |
+
"hin_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
|
| 248 |
+
"hin_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
|
| 249 |
+
|
| 250 |
+
# Maithili (often confused with Hindi) - map to Hindi
|
| 251 |
+
"mai_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
|
| 252 |
+
"mai_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
|
| 253 |
+
|
| 254 |
+
# Bengali variants
|
| 255 |
+
"ben_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
|
| 256 |
+
"ben_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
|
| 257 |
+
|
| 258 |
+
# Assamese (often confused with Bengali) - map to Bengali
|
| 259 |
+
"asm_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
|
| 260 |
+
"asm_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
|
| 261 |
+
|
| 262 |
+
# Tamil variants
|
| 263 |
+
"tam_Tamil": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
|
| 264 |
+
"tam_Taml": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
|
| 265 |
+
"tam_Latn": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
|
| 266 |
+
|
| 267 |
+
# Telugu variants
|
| 268 |
+
"tel_Telu": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
|
| 269 |
+
"tel_Latn": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
|
| 270 |
+
|
| 271 |
+
# Kannada variants
|
| 272 |
+
"kan_Knda": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
|
| 273 |
+
"kan_Latn": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
|
| 274 |
+
|
| 275 |
+
# Malayalam variants
|
| 276 |
+
"mal_Mlym": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
|
| 277 |
+
"mal_Latn": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
|
| 278 |
+
|
| 279 |
+
# Gujarati variants
|
| 280 |
+
"guj_Gujr": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
|
| 281 |
+
"guj_Latn": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
|
| 282 |
+
|
| 283 |
+
# Punjabi variants
|
| 284 |
+
"pan_Guru": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
|
| 285 |
+
"pan_Latn": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
|
| 286 |
+
|
| 287 |
+
# Marathi variants
|
| 288 |
+
"mar_Deva": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
|
| 289 |
+
"mar_Latn": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
|
| 290 |
+
|
| 291 |
+
# Urdu variants
|
| 292 |
+
"urd_Arab": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
|
| 293 |
+
"urd_Latn": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
|
| 294 |
+
|
| 295 |
+
# Additional commonly misdetected languages
|
| 296 |
+
"snd_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Sindhi → Hindi
|
| 297 |
+
"nep_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Nepali → Hindi
|
| 298 |
+
"kok_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Konkani → Hindi
|
| 299 |
+
"gom_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Goan Konkani → Hindi
|
| 300 |
+
"brx_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Bodo → Hindi
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
def enhanced_transliterate_robust(text, target_script):
|
| 304 |
+
"""
|
| 305 |
+
Enhanced transliteration with better romanization handling
|
| 306 |
+
"""
|
| 307 |
+
try:
|
| 308 |
+
# Preprocess text for better transliteration
|
| 309 |
+
cleaned_text = text.lower().strip()
|
| 310 |
+
|
| 311 |
+
# Handle common romanization patterns
|
| 312 |
+
replacements = {
|
| 313 |
+
'kh': 'kh', 'ch': 'ch', 'th': 'th', 'ph': 'ph',
|
| 314 |
+
'bh': 'bh', 'dh': 'dh', 'gh': 'gh', 'jh': 'jh',
|
| 315 |
+
'aa': 'A', 'ee': 'I', 'oo': 'U', 'ou': 'au'
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
for old, new in replacements.items():
|
| 319 |
+
cleaned_text = cleaned_text.replace(old, new)
|
| 320 |
+
|
| 321 |
+
# Transliterate using your existing library
|
| 322 |
+
result = transliterate(cleaned_text, sanscript.ITRANS, target_script)
|
| 323 |
+
return result if result else text
|
| 324 |
+
|
| 325 |
+
except Exception as e:
|
| 326 |
+
print(f"Transliteration error: {e}")
|
| 327 |
+
return text
|
| 328 |
+
|
| 329 |
+
def detect_and_translate_robust(texts, batch_size=64):
|
| 330 |
+
"""
|
| 331 |
+
Robust detection and translation with expanded language mapping
|
| 332 |
+
"""
|
| 333 |
+
results = []
|
| 334 |
+
preds = lid.batch_predict(texts, batch_size)
|
| 335 |
+
|
| 336 |
+
for item in preds:
|
| 337 |
+
if isinstance(item, dict):
|
| 338 |
+
text = item.get("text", "")
|
| 339 |
+
lang_code = item.get("lang", item.get("pred_lang", ""))
|
| 340 |
+
score = float(item.get("score", 0.0))
|
| 341 |
+
model_name = item.get("model", "")
|
| 342 |
+
else:
|
| 343 |
+
text, lang_code, score, model_name = item
|
| 344 |
+
|
| 345 |
+
is_romanized = lang_code.endswith("_Latn")
|
| 346 |
+
|
| 347 |
+
if lang_code not in LID_TO_TRANSLATE:
|
| 348 |
+
translation = f"Language '{lang_code}' not supported for translation"
|
| 349 |
+
method = "Unsupported"
|
| 350 |
+
else:
|
| 351 |
+
try:
|
| 352 |
+
lang_info = LID_TO_TRANSLATE[lang_code]
|
| 353 |
+
src_code = lang_info["it_code"]
|
| 354 |
+
|
| 355 |
+
if is_romanized:
|
| 356 |
+
# Use enhanced transliteration
|
| 357 |
+
native_text = enhanced_transliterate_robust(text, lang_info["script"])
|
| 358 |
+
method = f"Enhanced Transliteration + IndicTrans2 (detected as {lang_code})"
|
| 359 |
+
print(f"Enhanced: '{text}' → '{native_text}' (detected: {lang_code})")
|
| 360 |
+
else:
|
| 361 |
+
native_text = text
|
| 362 |
+
method = f"IndicTrans2 (detected as {lang_code})"
|
| 363 |
+
|
| 364 |
+
# Translate with IndicTrans2
|
| 365 |
+
pre = ip.preprocess_batch([native_text], src_lang=src_code, tgt_lang="eng_Latn")
|
| 366 |
+
inputs = tokenizer(pre, return_tensors="pt", padding=True).to(device)
|
| 367 |
+
with torch.no_grad():
|
| 368 |
+
out = model.generate(**inputs, num_beams=5, max_length=256, early_stopping=True)
|
| 369 |
+
dec = tokenizer.batch_decode(out, skip_special_tokens=True)
|
| 370 |
+
post = ip.postprocess_batch(dec, lang=src_code)
|
| 371 |
+
translation = post[0]
|
| 372 |
+
|
| 373 |
+
except Exception as e:
|
| 374 |
+
translation = f"Translation error: {str(e)}"
|
| 375 |
+
method = "Error"
|
| 376 |
+
|
| 377 |
+
results.append({
|
| 378 |
+
"original_text": text,
|
| 379 |
+
"detected_lang": lang_code,
|
| 380 |
+
"script_type": "Romanized" if is_romanized else "Native",
|
| 381 |
+
"confidence": f"{score:.3f}",
|
| 382 |
+
"translation_method": method,
|
| 383 |
+
"english_translation": translation
|
| 384 |
+
})
|
| 385 |
+
|
| 386 |
+
return pd.DataFrame(results)
|
| 387 |
+
|
| 388 |
+
print("✅ Robust translation function with expanded language mapping defined")
|
| 389 |
+
|
| 390 |
+
# Test with the same samples
|
| 391 |
+
sample_texts = [
|
| 392 |
+
"यहाँ कितने लोग हैं?",
|
| 393 |
+
"tum kaha ho",
|
| 394 |
+
"aaj mausam suhana hai",
|
| 395 |
+
"aap kaise hain",
|
| 396 |
+
"আমি ভালো আছি।",
|
| 397 |
+
"ami bhalo achi",
|
| 398 |
+
"mera naam rahul hai",
|
| 399 |
+
"main office jaa raha hun"
|
| 400 |
+
]
|
| 401 |
+
|
| 402 |
+
print(f"🔍 Testing robust approach with expanded language mapping...")
|
| 403 |
+
df_results = detect_and_translate_robust(sample_texts, batch_size=16)
|
| 404 |
+
display(df_results)
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
# ================================================================
|
| 408 |
+
# = COMPLETE TEST CODE FOR ALL 22 INDIAN LANGUAGES =
|
| 409 |
+
# ================================================================
|
| 410 |
+
|
| 411 |
+
import pandas as pd
|
| 412 |
+
from indic_transliteration import sanscript
|
| 413 |
+
from indic_transliteration.sanscript import transliterate
|
| 414 |
+
|
| 415 |
+
# Official 22 Indian languages sample sentences (native + romanized)
|
| 416 |
+
sample_sentences = {
|
| 417 |
+
"Assamese": ("আপুনি কেনেকৈ আছেন?", "apuni kenekoi asen?"),
|
| 418 |
+
"Bengali": ("তুমি কেমন আছো?", "tumi kemon acho?"),
|
| 419 |
+
"Bodo": ("नांगनि फाथै खौ?", "nangni phathai kho?"),
|
| 420 |
+
"Dogri": ("तुसीं केहे हो?", "tusi kehe ho?"),
|
| 421 |
+
"Gujarati": ("તમે કેમ છો?", "tame kem cho?"),
|
| 422 |
+
"Hindi": ("तुम कैसे हो?", "tum kaise ho?"),
|
| 423 |
+
"Kannada": ("ನೀವು ಹೇಗಿದ್ದೀರಾ?", "neevu hegiddira?"),
|
| 424 |
+
"Kashmiri": ("तुस की छै?", "tus ki chhai?"),
|
| 425 |
+
"Konkani": ("तुम कशें आसा?", "tum kashen asa?"),
|
| 426 |
+
"Maithili": ("अहाँ कथी छी?", "ahaan kathi chhi?"),
|
| 427 |
+
"Malayalam": ("സുഖമായിരോ?", "sukhamaayiro?"),
|
| 428 |
+
"Manipuri": ("नमस्कार, नखोंगबा तौ?", "namaskaar, nakhongba tau?"),
|
| 429 |
+
"Marathi": ("तू कसा आहेस?", "tu kasa ahes?"),
|
| 430 |
+
"Nepali": ("तिमी कस्तो छौ?", "timi kasto chau?"),
|
| 431 |
+
"Odia": ("ତୁମେ କେମିତି ଅଛ?", "tume kemiti achha?"),
|
| 432 |
+
"Punjabi": ("ਤੁਸੀਂ ਕਿਵੇਂ ਹੋ?", "tusi kiven ho?"),
|
| 433 |
+
"Sanskrit": ("भवतः कथम् अस्ति?", "bhavatah katham asti?"),
|
| 434 |
+
"Santali": ("ᱥᱟᱱᱛᱟᱲᱤ ᱠᱚᱱᱛᱮᱞᱤ ᱟᱹᱲᱤ?", "santalii konteli adii?"),
|
| 435 |
+
"Sindhi": ("توهان ڪيئن آهيو؟", "tohan kayn aahiyo?"),
|
| 436 |
+
"Tamil": ("நீங்கள் எப்படி இருக்கிறீர்கள்?", "neenga epdi irukeenga?"),
|
| 437 |
+
"Telugu": ("మీరు ఎలా ఉన్నారు?", "meeru ela unnaru?"),
|
| 438 |
+
"Urdu": ("آپ کیسے ہیں؟", "aap kaise hain?")
|
| 439 |
+
}
|
| 440 |
+
|
| 441 |
+
# Expanded language mapping (covers common misdetections)
|
| 442 |
+
LID_TO_TRANSLATE = {
|
| 443 |
+
# Hindi variants
|
| 444 |
+
"hin_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
|
| 445 |
+
"hin_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
|
| 446 |
+
"mai_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Maithili→Hindi
|
| 447 |
+
"mai_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
|
| 448 |
+
"nep_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Nepali→Hindi
|
| 449 |
+
"snd_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Sindhi→Hindi
|
| 450 |
+
"kok_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Konkani→Hindi
|
| 451 |
+
"brx_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Bodo→Hindi
|
| 452 |
+
|
| 453 |
+
# Bengali variants
|
| 454 |
+
"ben_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
|
| 455 |
+
"ben_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
|
| 456 |
+
"asm_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"}, # Assamese→Bengali
|
| 457 |
+
"asm_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
|
| 458 |
+
|
| 459 |
+
# Tamil variants
|
| 460 |
+
"tam_Tamil": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
|
| 461 |
+
"tam_Taml": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
|
| 462 |
+
"tam_Latn": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
|
| 463 |
+
|
| 464 |
+
# Telugu variants
|
| 465 |
+
"tel_Telu": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
|
| 466 |
+
"tel_Latn": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
|
| 467 |
+
|
| 468 |
+
# Kannada variants
|
| 469 |
+
"kan_Knda": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
|
| 470 |
+
"kan_Latn": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
|
| 471 |
+
|
| 472 |
+
# Malayalam variants
|
| 473 |
+
"mal_Mlym": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
|
| 474 |
+
"mal_Latn": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
|
| 475 |
+
|
| 476 |
+
# Gujarati variants
|
| 477 |
+
"guj_Gujr": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
|
| 478 |
+
"guj_Latn": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
|
| 479 |
+
|
| 480 |
+
# Punjabi variants
|
| 481 |
+
"pan_Guru": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
|
| 482 |
+
"pan_Latn": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
|
| 483 |
+
|
| 484 |
+
# Marathi variants
|
| 485 |
+
"mar_Deva": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
|
| 486 |
+
"mar_Latn": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
|
| 487 |
+
|
| 488 |
+
# Urdu variants
|
| 489 |
+
"urd_Arab": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
|
| 490 |
+
"urd_Latn": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
|
| 491 |
+
}
|
| 492 |
+
|
| 493 |
+
def enhanced_transliterate_robust(text, target_script):
|
| 494 |
+
"""Enhanced transliteration with better romanization handling"""
|
| 495 |
+
try:
|
| 496 |
+
cleaned_text = text.lower().strip()
|
| 497 |
+
replacements = {
|
| 498 |
+
'kh': 'kh', 'ch': 'ch', 'th': 'th', 'ph': 'ph',
|
| 499 |
+
'bh': 'bh', 'dh': 'dh', 'gh': 'gh', 'jh': 'jh',
|
| 500 |
+
'aa': 'A', 'ee': 'I', 'oo': 'U', 'ou': 'au'
|
| 501 |
+
}
|
| 502 |
+
for old, new in replacements.items():
|
| 503 |
+
cleaned_text = cleaned_text.replace(old, new)
|
| 504 |
+
result = transliterate(cleaned_text, sanscript.ITRANS, target_script)
|
| 505 |
+
return result if result else text
|
| 506 |
+
except Exception as e:
|
| 507 |
+
print(f"Transliteration error: {e}")
|
| 508 |
+
return text
|
| 509 |
+
|
| 510 |
+
def test_all_22_languages(texts, batch_size=32):
|
| 511 |
+
"""Complete testing function for all 22 languages"""
|
| 512 |
+
results = []
|
| 513 |
+
preds = lid.batch_predict(texts, batch_size)
|
| 514 |
+
|
| 515 |
+
for item in preds:
|
| 516 |
+
if isinstance(item, dict):
|
| 517 |
+
text = item.get("text", "")
|
| 518 |
+
lang_code = item.get("lang", item.get("pred_lang", ""))
|
| 519 |
+
score = float(item.get("score", 0.0))
|
| 520 |
+
model_name = item.get("model", "")
|
| 521 |
+
else:
|
| 522 |
+
text, lang_code, score, model_name = item
|
| 523 |
+
|
| 524 |
+
is_romanized = lang_code.endswith("_Latn")
|
| 525 |
+
|
| 526 |
+
if lang_code not in LID_TO_TRANSLATE:
|
| 527 |
+
translation = f"Language '{lang_code}' not supported"
|
| 528 |
+
method = "Unsupported"
|
| 529 |
+
else:
|
| 530 |
+
try:
|
| 531 |
+
lang_info = LID_TO_TRANSLATE[lang_code]
|
| 532 |
+
src_code = lang_info["it_code"]
|
| 533 |
+
|
| 534 |
+
if is_romanized:
|
| 535 |
+
native_text = enhanced_transliterate_robust(text, lang_info["script"])
|
| 536 |
+
method = f"Transliteration+IndicTrans2 (detected: {lang_code})"
|
| 537 |
+
print(f"Romanized: '{text}' → '{native_text}'")
|
| 538 |
+
else:
|
| 539 |
+
native_text = text
|
| 540 |
+
method = f"IndicTrans2 (detected: {lang_code})"
|
| 541 |
+
|
| 542 |
+
# Translate with IndicTrans2
|
| 543 |
+
pre = ip.preprocess_batch([native_text], src_lang=src_code, tgt_lang="eng_Latn")
|
| 544 |
+
inputs = tokenizer(pre, return_tensors="pt", padding=True).to(device)
|
| 545 |
+
with torch.no_grad():
|
| 546 |
+
out = model.generate(**inputs, num_beams=5, max_length=256, early_stopping=True)
|
| 547 |
+
dec = tokenizer.batch_decode(out, skip_special_tokens=True)
|
| 548 |
+
post = ip.postprocess_batch(dec, lang=src_code)
|
| 549 |
+
translation = post[0]
|
| 550 |
+
|
| 551 |
+
except Exception as e:
|
| 552 |
+
translation = f"Translation error: {str(e)}"
|
| 553 |
+
method = "Error"
|
| 554 |
+
|
| 555 |
+
results.append({
|
| 556 |
+
"language": text[:20] + "..." if len(text) > 20 else text,
|
| 557 |
+
"original_text": text,
|
| 558 |
+
"detected_lang": lang_code,
|
| 559 |
+
"script_type": "Romanized" if is_romanized else "Native",
|
| 560 |
+
"confidence": f"{score:.3f}",
|
| 561 |
+
"method": method,
|
| 562 |
+
"english_translation": translation
|
| 563 |
+
})
|
| 564 |
+
|
| 565 |
+
return pd.DataFrame(results)
|
| 566 |
+
|
| 567 |
+
# Create test dataset with all 44 samples (22 native + 22 romanized)
|
| 568 |
+
print("🔍 Creating test dataset for all 22 official Indian languages...")
|
| 569 |
+
all_test_texts = []
|
| 570 |
+
for lang, (native, roman) in sample_sentences.items():
|
| 571 |
+
all_test_texts.append(native)
|
| 572 |
+
all_test_texts.append(roman)
|
| 573 |
+
|
| 574 |
+
print(f"📊 Testing {len(all_test_texts)} samples ({len(sample_sentences)} languages × 2 scripts)...")
|
| 575 |
+
|
| 576 |
+
# Run the complete test
|
| 577 |
+
df_results = test_all_22_languages(all_test_texts, batch_size=32)
|
| 578 |
+
|
| 579 |
+
# Display results
|
| 580 |
+
print("\n🎯 COMPLETE TEST RESULTS:")
|
| 581 |
+
display(df_results)
|
| 582 |
+
|
| 583 |
+
# Summary statistics
|
| 584 |
+
print(f"\n📈 SUMMARY STATISTICS:")
|
| 585 |
+
print(f"Total samples tested: {len(df_results)}")
|
| 586 |
+
print(f"Languages detected: {df_results['detected_lang'].nunique()}")
|
| 587 |
+
print(f"Native script samples: {len(df_results[df_results['script_type'] == 'Native'])}")
|
| 588 |
+
print(f"Romanized samples: {len(df_results[df_results['script_type'] == 'Romanized'])}")
|
| 589 |
+
print(f"Successfully translated: {len(df_results[~df_results['english_translation'].str.contains('error|not supported', case=False)])}")
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
import pandas as pd
|
| 593 |
+
|
| 594 |
+
def detailed_translation_summary(df_results):
|
| 595 |
+
"""
|
| 596 |
+
Generate comprehensive detailed summary of translation results
|
| 597 |
+
"""
|
| 598 |
+
# Flag successful translations
|
| 599 |
+
df_results['successful_translation'] = ~df_results['english_translation'].str.contains('error|not supported', case=False, na=False)
|
| 600 |
+
|
| 601 |
+
print("\n=========== OVERALL SUMMARY ===========")
|
| 602 |
+
print(f"Total samples tested: {len(df_results)}")
|
| 603 |
+
print(f"Languages detected: {df_results['detected_lang'].nunique()}")
|
| 604 |
+
print(f"Native script samples: {df_results[df_results['script_type'] == 'Native'].shape[0]}")
|
| 605 |
+
print(f"Romanized samples: {df_results[df_results['script_type'] == 'Romanized'].shape}")
|
| 606 |
+
print(f"Successfully translated: {df_results['successful_translation'].sum()}")
|
| 607 |
+
|
| 608 |
+
overall_success_rate = (df_results['successful_translation'].sum() / len(df_results) * 100)
|
| 609 |
+
print(f"Overall success rate: {overall_success_rate:.1f}%")
|
| 610 |
+
|
| 611 |
+
print("\n=========== DETAILED LANGUAGE BREAKDOWN ===========")
|
| 612 |
+
# Per-language analysis
|
| 613 |
+
lang_summary = df_results.groupby('detected_lang').agg(
|
| 614 |
+
total_samples=('original_text', 'count'),
|
| 615 |
+
native_count=('script_type', lambda x: (x == 'Native').sum()),
|
| 616 |
+
romanized_count=('script_type', lambda x: (x == 'Romanized').sum()),
|
| 617 |
+
mean_confidence=('confidence', lambda x: pd.to_numeric(x, errors='coerce').mean()),
|
| 618 |
+
success=('successful_translation', 'sum'),
|
| 619 |
+
error_count=('successful_translation', lambda x: (~x).sum())
|
| 620 |
+
).reset_index().sort_values('total_samples', ascending=False)
|
| 621 |
+
|
| 622 |
+
lang_summary['success_rate'] = (lang_summary['success'] / lang_summary['total_samples'] * 100).round(1)
|
| 623 |
+
print(lang_summary)
|
| 624 |
+
|
| 625 |
+
print("\n=========== TOP PERFORMING LANGUAGES ===========")
|
| 626 |
+
top_performers = lang_summary[lang_summary['success_rate'] >= 90].sort_values('success_rate', ascending=False)
|
| 627 |
+
if len(top_performers) > 0:
|
| 628 |
+
print(top_performers[['detected_lang', 'total_samples', 'success_rate']])
|
| 629 |
+
else:
|
| 630 |
+
print("No languages with 90%+ success rate")
|
| 631 |
+
|
| 632 |
+
print("\n=========== CHALLENGING LANGUAGES ===========")
|
| 633 |
+
challenging = lang_summary[lang_summary['success_rate'] < 50].sort_values('success_rate')
|
| 634 |
+
if len(challenging) > 0:
|
| 635 |
+
print(challenging[['detected_lang', 'total_samples', 'success_rate']])
|
| 636 |
+
else:
|
| 637 |
+
print("No languages with <50% success rate")
|
| 638 |
+
|
| 639 |
+
print("\n=========== ERROR ANALYSIS ===========")
|
| 640 |
+
error_df = df_results[~df_results['successful_translation']]
|
| 641 |
+
print(f"Total errors: {len(error_df)}")
|
| 642 |
+
if len(error_df) > 0:
|
| 643 |
+
print("\nError samples:")
|
| 644 |
+
print(error_df[['original_text', 'detected_lang', 'script_type', 'confidence', 'english_translation']])
|
| 645 |
+
else:
|
| 646 |
+
print("No errors found!")
|
| 647 |
+
|
| 648 |
+
print("\n=========== SUCCESS BREAKDOWN BY SCRIPT ===========")
|
| 649 |
+
script_summary = df_results.groupby('script_type').agg(
|
| 650 |
+
total_samples=('original_text', 'count'),
|
| 651 |
+
successful=('successful_translation', 'sum'),
|
| 652 |
+
success_rate=('successful_translation', lambda x: x.mean() * 100)
|
| 653 |
+
).round(1)
|
| 654 |
+
print(script_summary)
|
| 655 |
+
|
| 656 |
+
print("\n=========== DETECTION CONFIDENCE ANALYSIS ===========")
|
| 657 |
+
confidence_summary = lang_summary[['detected_lang', 'mean_confidence']].sort_values('mean_confidence', ascending=False)
|
| 658 |
+
print("Top 10 most confident detections:")
|
| 659 |
+
print(confidence_summary.head(10))
|
| 660 |
+
|
| 661 |
+
return lang_summary, script_summary, error_df
|
| 662 |
+
|
| 663 |
+
# ===== HOW TO USE =====
|
| 664 |
+
print("✅ Detailed summary function defined")
|
| 665 |
+
print("\n📋 To run on your test results:")
|
| 666 |
+
print(" lang_summary, script_summary, error_df = detailed_translation_summary(df_results)")
|
| 667 |
+
print(" display(lang_summary)")
|
| 668 |
+
print(" display(error_df)")
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
lang_summary, script_summary, error_df = detailed_translation_summary(df_results)
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
display(lang_summary)
|
| 675 |
+
display(error_df)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
sentencepiece
|
| 4 |
+
torch
|
| 5 |
+
transformers
|