|
import streamlit as st |
|
from ui.test_results import display_test_results |
|
|
|
def display_model_evaluation(): |
|
"""Displays the evaluation results of the trained model on the test set.""" |
|
|
|
st.header("π Model Evaluation on Test Set") |
|
|
|
|
|
if "trained_model" in st.session_state and "X_test" in st.session_state: |
|
trained_model = st.session_state.trained_model |
|
X_test = st.session_state.X_test |
|
y_test = st.session_state.y_test |
|
task_type = st.session_state.task_type |
|
|
|
|
|
if task_type == "classification": |
|
if isinstance(trained_model, tuple): |
|
pipeline, label_encoder = trained_model |
|
display_test_results((pipeline, label_encoder), X_test, y_test, task_type) |
|
else: |
|
display_test_results(trained_model, X_test, y_test, task_type) |
|
else: |
|
display_test_results(trained_model, X_test, y_test, task_type) |
|
|
|
else: |
|
st.warning("π¨ Train a model first to see test results!") |
|
|