Spaces:
Sleeping
Sleeping
karwanjiru
commited on
Commit
·
66b2cfe
1
Parent(s):
5c8ab1d
image moderation
Browse files
app.py
CHANGED
@@ -1,13 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
-
import torch
|
6 |
from huggingface_hub import InferenceClient
|
7 |
import requests
|
8 |
-
from PIL import Image
|
9 |
from io import BytesIO
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Device configuration
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
@@ -24,6 +57,9 @@ else:
|
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
MAX_IMAGE_SIZE = 1024
|
26 |
|
|
|
|
|
|
|
27 |
# Inference function for generating images
|
28 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
29 |
if randomize_seed:
|
@@ -43,16 +79,6 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
43 |
|
44 |
return image
|
45 |
|
46 |
-
# Examples for the text-to-image generation
|
47 |
-
examples = [
|
48 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
49 |
-
"An astronaut riding a green horse",
|
50 |
-
"A delicious ceviche cheesecake slice",
|
51 |
-
]
|
52 |
-
|
53 |
-
# Initialize the InferenceClient
|
54 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
55 |
-
|
56 |
# Respond function for the chatbot
|
57 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
58 |
messages = [{"role": "system", "content": system_message}]
|
@@ -186,5 +212,22 @@ with gr.Blocks(css=css) as demo:
|
|
186 |
image_moderation_result = gr.Textbox(label="Image Moderation Result")
|
187 |
moderate_image_button.click(moderate_image, uploaded_image, image_moderation_result)
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from transformers import AutoProcessor, FocalNetForImageClassification
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
import random
|
9 |
from diffusers import DiffusionPipeline
|
|
|
10 |
from huggingface_hub import InferenceClient
|
11 |
import requests
|
|
|
12 |
from io import BytesIO
|
13 |
|
14 |
+
# Paths and model setup
|
15 |
+
image_folder = "path_to_your_image_folder" # Specify the path to your image folder
|
16 |
+
model_path = "MichalMlodawski/nsfw-image-detection-large"
|
17 |
+
|
18 |
+
# List of jpg files in the folder
|
19 |
+
jpg_files = [file for file in os.listdir(image_folder) if file.lower().endswith(".jpg")]
|
20 |
+
|
21 |
+
if not jpg_files:
|
22 |
+
print("🚫 No jpg files found in folder:", image_folder)
|
23 |
+
exit()
|
24 |
+
|
25 |
+
# Load the model and feature extractor
|
26 |
+
feature_extractor = AutoProcessor.from_pretrained(model_path)
|
27 |
+
model = FocalNetForImageClassification.from_pretrained(model_path)
|
28 |
+
model.eval()
|
29 |
+
|
30 |
+
# Image transformations
|
31 |
+
transform = transforms.Compose([
|
32 |
+
transforms.Resize((512, 512)),
|
33 |
+
transforms.ToTensor(),
|
34 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
35 |
+
])
|
36 |
+
|
37 |
+
# Mapping from model labels to NSFW categories
|
38 |
+
label_to_category = {
|
39 |
+
"LABEL_0": "Safe",
|
40 |
+
"LABEL_1": "Questionable",
|
41 |
+
"LABEL_2": "Unsafe"
|
42 |
+
}
|
43 |
+
|
44 |
# Device configuration
|
45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
|
|
|
57 |
MAX_SEED = np.iinfo(np.int32).max
|
58 |
MAX_IMAGE_SIZE = 1024
|
59 |
|
60 |
+
# Initialize the InferenceClient
|
61 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
62 |
+
|
63 |
# Inference function for generating images
|
64 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
65 |
if randomize_seed:
|
|
|
79 |
|
80 |
return image
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# Respond function for the chatbot
|
83 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
84 |
messages = [{"role": "system", "content": system_message}]
|
|
|
212 |
image_moderation_result = gr.Textbox(label="Image Moderation Result")
|
213 |
moderate_image_button.click(moderate_image, uploaded_image, image_moderation_result)
|
214 |
|
215 |
+
with gr.TabItem("NSFW Classification"):
|
216 |
+
selected_image = gr.Image(type="pil", label="Upload Image for NSFW Classification")
|
217 |
+
classify_button = gr.Button("Classify Image")
|
218 |
+
classification_result = gr.Textbox(label="Classification Result")
|
219 |
+
|
220 |
+
def classify_nsfw(image):
|
221 |
+
image_tensor = transform(image).unsqueeze(0)
|
222 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
223 |
+
with torch.no_grad():
|
224 |
+
outputs = model(**inputs)
|
225 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
226 |
+
confidence, predicted = torch.max(probabilities, 1)
|
227 |
+
label = model.config.id2label[predicted.item()]
|
228 |
+
category = label_to_category.get(label, "Unknown")
|
229 |
+
return f"Label: {label}, Category: {category}, Confidence: {confidence.item() * 100:.2f}%"
|
230 |
+
|
231 |
+
classify_button.click(classify_nsfw, selected_image, classification_result)
|
232 |
+
|
233 |
+
demo.launch()
|