Spaces:
Sleeping
Sleeping
karwanjiru
commited on
Commit
·
370d98b
1
Parent(s):
ddf531e
image
Browse files
app.py
CHANGED
@@ -1,13 +1,59 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import requests
|
4 |
from PIL import Image
|
5 |
from io import BytesIO
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
-
#
|
11 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
12 |
messages = [{"role": "system", "content": system_message}]
|
13 |
|
@@ -28,7 +74,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
28 |
|
29 |
return response.choices[0].message['content']
|
30 |
|
31 |
-
#
|
32 |
def generate_post(prompt, max_tokens, temperature, top_p):
|
33 |
response = client.chat_completion(
|
34 |
[{"role": "user", "content": prompt}],
|
@@ -38,21 +84,20 @@ def generate_post(prompt, max_tokens, temperature, top_p):
|
|
38 |
)
|
39 |
return response.choices[0].message['content']
|
40 |
|
41 |
-
#
|
42 |
def moderate_post(post):
|
43 |
# Implement your post moderation logic here
|
44 |
if "inappropriate" in post:
|
45 |
return "Post does not adhere to community guidelines."
|
46 |
return "Post adheres to community guidelines."
|
47 |
|
48 |
-
#
|
49 |
def generate_image(prompt):
|
50 |
-
|
51 |
-
|
52 |
-
image = Image.open(BytesIO(response))
|
53 |
return image
|
54 |
|
55 |
-
#
|
56 |
def moderate_image(image):
|
57 |
# Convert the PIL image to a format that can be sent for moderation
|
58 |
buffered = BytesIO()
|
@@ -73,10 +118,21 @@ def moderate_image(image):
|
|
73 |
return "Image does not adhere to community guidelines."
|
74 |
|
75 |
# Create the Gradio interface
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
with demo:
|
79 |
gr.Markdown("# AI-driven Content Generation and Moderation Bot")
|
|
|
80 |
|
81 |
with gr.Tabs():
|
82 |
with gr.TabItem("Chat"):
|
@@ -131,4 +187,4 @@ with demo:
|
|
131 |
moderate_image_button.click(moderate_image, uploaded_image, image_moderation_result)
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
import torch
|
6 |
from huggingface_hub import InferenceClient
|
7 |
import requests
|
8 |
from PIL import Image
|
9 |
from io import BytesIO
|
10 |
|
11 |
+
# Device configuration
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
# Load the diffusion pipeline
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
torch.cuda.max_memory_allocated(device=device)
|
17 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
18 |
+
pipe.enable_xformers_memory_efficient_attention()
|
19 |
+
pipe = pipe.to(device)
|
20 |
+
else:
|
21 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
22 |
+
pipe = pipe.to(device)
|
23 |
+
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
MAX_IMAGE_SIZE = 1024
|
26 |
+
|
27 |
+
# Inference function for generating images
|
28 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
29 |
+
if randomize_seed:
|
30 |
+
seed = random.randint(0, MAX_SEED)
|
31 |
+
|
32 |
+
generator = torch.Generator().manual_seed(seed)
|
33 |
+
|
34 |
+
image = pipe(
|
35 |
+
prompt=prompt,
|
36 |
+
negative_prompt=negative_prompt,
|
37 |
+
guidance_scale=guidance_scale,
|
38 |
+
num_inference_steps=num_inference_steps,
|
39 |
+
width=width,
|
40 |
+
height=height,
|
41 |
+
generator=generator
|
42 |
+
).images[0]
|
43 |
+
|
44 |
+
return image
|
45 |
+
|
46 |
+
# Examples for the text-to-image generation
|
47 |
+
examples = [
|
48 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
49 |
+
"An astronaut riding a green horse",
|
50 |
+
"A delicious ceviche cheesecake slice",
|
51 |
+
]
|
52 |
+
|
53 |
+
# Initialize the InferenceClient
|
54 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
55 |
|
56 |
+
# Respond function for the chatbot
|
57 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
58 |
messages = [{"role": "system", "content": system_message}]
|
59 |
|
|
|
74 |
|
75 |
return response.choices[0].message['content']
|
76 |
|
77 |
+
# Function to generate posts
|
78 |
def generate_post(prompt, max_tokens, temperature, top_p):
|
79 |
response = client.chat_completion(
|
80 |
[{"role": "user", "content": prompt}],
|
|
|
84 |
)
|
85 |
return response.choices[0].message['content']
|
86 |
|
87 |
+
# Function to moderate posts
|
88 |
def moderate_post(post):
|
89 |
# Implement your post moderation logic here
|
90 |
if "inappropriate" in post:
|
91 |
return "Post does not adhere to community guidelines."
|
92 |
return "Post adheres to community guidelines."
|
93 |
|
94 |
+
# Function to generate images using the diffusion pipeline
|
95 |
def generate_image(prompt):
|
96 |
+
generator = torch.manual_seed(random.randint(0, MAX_SEED))
|
97 |
+
image = pipe(prompt=prompt, generator=generator).images[0]
|
|
|
98 |
return image
|
99 |
|
100 |
+
# Function to moderate images
|
101 |
def moderate_image(image):
|
102 |
# Convert the PIL image to a format that can be sent for moderation
|
103 |
buffered = BytesIO()
|
|
|
118 |
return "Image does not adhere to community guidelines."
|
119 |
|
120 |
# Create the Gradio interface
|
121 |
+
css = """
|
122 |
+
#col-container {
|
123 |
+
margin: 0 auto;
|
124 |
+
max-width: 520px;
|
125 |
+
}
|
126 |
+
"""
|
127 |
+
|
128 |
+
if torch.cuda.is_available():
|
129 |
+
power_device = "GPU"
|
130 |
+
else:
|
131 |
+
power_device = "CPU"
|
132 |
|
133 |
+
with gr.Blocks(css=css) as demo:
|
134 |
gr.Markdown("# AI-driven Content Generation and Moderation Bot")
|
135 |
+
gr.Markdown(f"Currently running on {power_device}.")
|
136 |
|
137 |
with gr.Tabs():
|
138 |
with gr.TabItem("Chat"):
|
|
|
187 |
moderate_image_button.click(moderate_image, uploaded_image, image_moderation_result)
|
188 |
|
189 |
if __name__ == "__main__":
|
190 |
+
demo.launch()
|