solo-project / app.py
karwanjiru's picture
content moderation fixed
091d316
raw
history blame
7.85 kB
import os
from io import BytesIO
import random
import torch
from PIL import Image
from transformers import AutoProcessor, FocalNetForImageClassification
from diffusers import DiffusionPipeline
from detoxify import Detoxify
import gradio as gr
from huggingface_hub import InferenceClient
import requests
from torchvision import transforms
import numpy as np
# Paths and model setup
model_path = "MichalMlodawski/nsfw-image-detection-large"
# Load the model and feature extractor
feature_extractor = AutoProcessor.from_pretrained(model_path)
model = FocalNetForImageClassification.from_pretrained(model_path)
model.eval()
# Image transformations
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Mapping from model labels to NSFW categories
label_to_category = {
"LABEL_0": "Safe",
"LABEL_1": "Questionable",
"LABEL_2": "Unsafe"
}
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the diffusion pipeline
if torch.cuda.is_available():
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
# Initialize the InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Function to analyze text
def analyze_text(input_text):
results = Detoxify('original').predict(input_text)
return results
# Inference function for generating images
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
# Respond function for the chatbot
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message['content']
# Function to generate posts
def generate_post(prompt, max_tokens, temperature, top_p):
response = client.chat_completion(
[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response.choices[0].message['content']
# Function to moderate posts
def moderate_post(post):
results = Detoxify('original').predict(post)
for key, value in results.items():
if value > 0.5:
return "Post does not adhere to community guidelines."
return "Post adheres to community guidelines."
# Function to generate images using the diffusion pipeline
def generate_image(prompt):
generator = torch.manual_seed(random.randint(0, MAX_SEED))
image = pipe(prompt=prompt, generator=generator).images[0]
return image
# Function to moderate images
def moderate_image(image):
image_tensor = transform(image).unsqueeze(0)
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
confidence, predicted = torch.max(probabilities, 1)
label = model.config.id2label[predicted.item()]
category = label_to_category.get(label, "Unknown")
return f"Label: {label}, Category: {category}, Confidence: {confidence.item() * 100:.2f}%"
# Create the Gradio interface
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
gr.Markdown("# AI-driven Content Generation and Moderation Bot")
gr.Markdown(f"Currently running on {power_device}.")
with gr.Tabs():
with gr.TabItem("Chat"):
with gr.Column():
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot meant to assist users in managing social media posts ensuring they meet community guidelines", label="System message", visible=False),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens", visible=False),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", visible=False),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", visible=False),
],
)
advanced_button = gr.Button("Show Advanced Settings")
advanced_settings = gr.Column(visible=False)
with advanced_settings:
chat_interface.additional_inputs[0].visible = True
chat_interface.additional_inputs[1].visible = True
chat_interface.additional_inputs[2].visible = True
chat_interface.additional_inputs[3].visible = True
def toggle_advanced_settings():
advanced_settings.visible = not advanced_settings.visible
advanced_button.click(toggle_advanced_settings, [], advanced_settings)
with gr.TabItem("Generate Post"):
post_prompt = gr.Textbox(label="Post Prompt")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
generate_button = gr.Button("Generate Post")
generated_post = gr.Textbox(label="Generated Post")
generate_button.click(generate_post, [post_prompt, max_tokens, temperature, top_p], generated_post)
with gr.TabItem("Moderate Post"):
post_content = gr.Textbox(label="Post Content")
moderate_button = gr.Button("Moderate Post")
moderation_result = gr.Textbox(label="Moderation Result")
moderate_button.click(moderate_post, post_content, moderation_result)
with gr.TabItem("Generate Image"):
image_prompt = gr.Textbox(label="Image Prompt")
generate_image_button = gr.Button("Generate Image")
generated_image = gr.Image(label="Generated Image")
generate_image_button.click(generate_image, image_prompt, generated_image)
with gr.TabItem("Moderate Image"):
selected_image = gr.Image(type="pil", label="Upload Image for Moderation")
classify_button = gr.Button("Classify Image")
classification_result = gr.Textbox(label="Classification Result")
classify_button.click(moderate_image, selected_image, classification_result)
demo.launch()