karthsanth commited on
Commit
1b48f5a
·
verified ·
1 Parent(s): 4211935

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -75,10 +75,6 @@ X_train, X_val, y_train, y_val = train_test_split(X, y, train_size=0.8, random_s
75
  # Random Forest model
76
  random_forest_model = RandomForestClassifier(n_estimators=100, max_depth=16, min_samples_split=10, random_state=RANDOM_STATE).fit(X_train, y_train)
77
 
78
- # Model performance
79
- print(f"Metrics train:\n\tAccuracy score: {accuracy_score(random_forest_model.predict(X_train), y_train):.4f}")
80
- print(f"Metrics test:\n\tAccuracy score: {accuracy_score(random_forest_model.predict(X_val), y_val):.4f}")
81
-
82
  # Make predictions on validation data
83
  predictions_random_forest = random_forest_model.predict(X_val)
84
 
@@ -96,10 +92,10 @@ from sklearn.ensemble import RandomForestClassifier
96
  import seaborn as sns
97
 
98
  # Load the data and model
99
- x_train = pd.read_csv("x_train.csv")
100
- x_val = pd.read_csv("x_val.csv")
101
- y_train = pd.read_csv("y_train_refined.csv")
102
- y_val = pd.read_csv("y_val_refined.csv")
103
 
104
  RANDOM_STATE = 55
105
  random_forest_model = RandomForestClassifier(
@@ -110,7 +106,12 @@ random_forest_model = RandomForestClassifier(
110
  ).fit(x_train, y_train)
111
 
112
  # Make predictions
113
- y_pred = random_forest_model.predict(x_val)
 
 
 
 
 
114
 
115
  # Calculate metrics
116
  precision = precision_score(y_val, y_pred, average='weighted')
@@ -298,3 +299,4 @@ iface = gr.Interface(
298
 
299
  iface.launch()
300
  'gradio deploy'
 
 
75
  # Random Forest model
76
  random_forest_model = RandomForestClassifier(n_estimators=100, max_depth=16, min_samples_split=10, random_state=RANDOM_STATE).fit(X_train, y_train)
77
 
 
 
 
 
78
  # Make predictions on validation data
79
  predictions_random_forest = random_forest_model.predict(X_val)
80
 
 
92
  import seaborn as sns
93
 
94
  # Load the data and model
95
+ x_train = pd.read_csv("X_train.csv")
96
+ x_val = pd.read_csv("X_val.csv")
97
+ y_train = pd.read_csv("y_train.csv")
98
+ y_val = pd.read_csv("y_val.csv")
99
 
100
  RANDOM_STATE = 55
101
  random_forest_model = RandomForestClassifier(
 
106
  ).fit(x_train, y_train)
107
 
108
  # Make predictions
109
+ y_pred = random_forest_model.predict(x_val.drop(columns=['ID']))
110
+
111
+ # Calculate metrics
112
+ precision = precision_score(y_val, y_pred, average='weighted')
113
+ recall = recall_score(y_val, y_pred, average='weighted')
114
+ accuracy = accuracy_score(y_val, y_pred)
115
 
116
  # Calculate metrics
117
  precision = precision_score(y_val, y_pred, average='weighted')
 
299
 
300
  iface.launch()
301
  'gradio deploy'
302
+