karthikqnq commited on
Commit
7c5b993
·
verified ·
1 Parent(s): c4513ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -34
app.py CHANGED
@@ -1,11 +1,8 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,50 +12,64 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  gr.Slider(
53
  minimum=0.1,
54
  maximum=1.0,
55
  value=0.95,
56
  step=0.05,
57
- label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
 
 
 
 
 
3
 
4
+ # Load the model
5
+ model = pipeline("text-generation", model="karthikqnq/qnqgpt2")
6
 
7
  def respond(
8
  message,
 
12
  temperature,
13
  top_p,
14
  ):
15
+ # Construct the prompt from history and current message
16
+ prompt = system_message + "\n\n"
17
+ for user_msg, assistant_msg in history:
18
+ if user_msg:
19
+ prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
20
+ prompt += f"User: {message}\nAssistant: "
 
 
 
21
 
22
+ # Generate response
23
+ response = model(
24
+ prompt,
25
+ max_length=max_tokens,
 
 
26
  temperature=temperature,
27
  top_p=top_p,
28
+ do_sample=True,
29
+ num_return_sequences=1
30
+ )[0]['generated_text']
31
 
32
+ # Extract only the assistant's response
33
+ try:
34
+ assistant_response = response.split("Assistant: ")[-1].strip()
35
+ except:
36
+ assistant_response = response
37
 
38
+ return assistant_response
39
 
40
+ # Create the Gradio interface
 
 
41
  demo = gr.ChatInterface(
42
  respond,
43
  additional_inputs=[
44
+ gr.Textbox(
45
+ value="You are a friendly Chatbot.",
46
+ label="System message"
47
+ ),
48
+ gr.Slider(
49
+ minimum=1,
50
+ maximum=2048,
51
+ value=512,
52
+ step=1,
53
+ label="Max new tokens"
54
+ ),
55
+ gr.Slider(
56
+ minimum=0.1,
57
+ maximum=4.0,
58
+ value=0.7,
59
+ step=0.1,
60
+ label="Temperature"
61
+ ),
62
  gr.Slider(
63
  minimum=0.1,
64
  maximum=1.0,
65
  value=0.95,
66
  step=0.05,
67
+ label="Top-p (nucleus sampling)"
68
  ),
69
  ],
70
+ title="QnQ GPT-2 Chatbot",
71
+ description="A chatbot powered by the QnQ GPT-2 model"
72
  )
73
 
 
74
  if __name__ == "__main__":
75
+ demo.launch()