Spaces:
Sleeping
Sleeping
Upload 24 files
Browse files- .env +2 -0
- Dockerfile +70 -0
- api/__init__.py +0 -0
- api/__pycache__/__init__.cpython-311.pyc +0 -0
- api/__pycache__/server.cpython-311.pyc +0 -0
- api/server.py +403 -0
- core/__init__.py +0 -0
- core/__pycache__/__init__.cpython-311.pyc +0 -0
- core/__pycache__/script_gen.cpython-311.pyc +0 -0
- core/__pycache__/story_script.cpython-311.pyc +0 -0
- core/assembler.py +58 -0
- core/image_generator.py +85 -0
- core/music_generator.py +35 -0
- core/script_gen.py +98 -0
- core/script_generator.py +95 -0
- core/seed_manager.py +65 -0
- core/story_script.py +593 -0
- core/video_generator.py +93 -0
- pipeline/_init.py +0 -0
- pipeline/pipeline.py +49 -0
- services/__init__.py +0 -0
- services/__pycache__/__init__.cpython-311.pyc +0 -0
- services/__pycache__/queue_manager.cpython-311.pyc +0 -0
- services/queue_manager.py +401 -0
.env
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OPENROUTER_API_KEY=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
|
| 2 |
+
|
Dockerfile
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Base image with Python
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Environment variables
|
| 8 |
+
ENV PYTHONUNBUFFERED=1
|
| 9 |
+
ENV MODEL_DIR=/tmp/models/realvisxl_v4
|
| 10 |
+
|
| 11 |
+
# Install system dependencies
|
| 12 |
+
RUN apt-get update && apt-get install -y \
|
| 13 |
+
git \
|
| 14 |
+
wget \
|
| 15 |
+
curl \
|
| 16 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 17 |
+
|
| 18 |
+
# Copy all project files
|
| 19 |
+
COPY . /app
|
| 20 |
+
|
| 21 |
+
# Create model directory
|
| 22 |
+
RUN mkdir -p ${MODEL_DIR}
|
| 23 |
+
|
| 24 |
+
# --- Install Python dependencies ---
|
| 25 |
+
RUN pip install --no-cache-dir \
|
| 26 |
+
annotated-types==0.7.0 \
|
| 27 |
+
anyio==4.11.0 \
|
| 28 |
+
certifi==2025.10.5 \
|
| 29 |
+
click==8.3.0 \
|
| 30 |
+
colorama==0.4.6 \
|
| 31 |
+
fastapi==0.119.0 \
|
| 32 |
+
h11==0.16.0 \
|
| 33 |
+
httpcore==1.0.9 \
|
| 34 |
+
httpx==0.28.1 \
|
| 35 |
+
idna==3.11 \
|
| 36 |
+
pydantic==2.12.2 \
|
| 37 |
+
pydantic_core==2.41.4 \
|
| 38 |
+
python-dotenv==1.1.1 \
|
| 39 |
+
sniffio==1.3.1 \
|
| 40 |
+
starlette==0.48.0 \
|
| 41 |
+
typing_extensions==4.15.0 \
|
| 42 |
+
typing-inspection==0.4.2 \
|
| 43 |
+
uvicorn==0.37.0 \
|
| 44 |
+
torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu \
|
| 45 |
+
diffusers==0.30.3 \
|
| 46 |
+
huggingface_hub==0.26.2 \
|
| 47 |
+
accelerate==1.1.1 \
|
| 48 |
+
safetensors==0.4.5 \
|
| 49 |
+
pillow==10.4.0
|
| 50 |
+
|
| 51 |
+
# --- Pre-download model into /tmp/models/realvisxl_v4 ---
|
| 52 |
+
RUN python -c "\
|
| 53 |
+
import torch; \
|
| 54 |
+
from diffusers import StableDiffusionXLPipeline; \
|
| 55 |
+
from pathlib import Path; \
|
| 56 |
+
model_dir = Path('${MODEL_DIR}'); \
|
| 57 |
+
if not model_dir.exists(): \
|
| 58 |
+
print('Downloading model...'); \
|
| 59 |
+
pipe = StableDiffusionXLPipeline.from_pretrained('SG161222/RealVisXL_V4.0', torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32); \
|
| 60 |
+
pipe.save_pretrained(model_dir); \
|
| 61 |
+
print('Model downloaded to', model_dir); \
|
| 62 |
+
else: \
|
| 63 |
+
print('Model already exists at', model_dir); \
|
| 64 |
+
"
|
| 65 |
+
|
| 66 |
+
# Expose the app port
|
| 67 |
+
EXPOSE 8000
|
| 68 |
+
|
| 69 |
+
# Command to run FastAPI server
|
| 70 |
+
CMD ["uvicorn", "api.server:app", "--host", "0.0.0.0", "--port", "8000"]
|
api/__init__.py
ADDED
|
File without changes
|
api/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (159 Bytes). View file
|
|
|
api/__pycache__/server.cpython-311.pyc
ADDED
|
Binary file (5.65 kB). View file
|
|
|
api/server.py
ADDED
|
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # api/server.py
|
| 2 |
+
# from fastapi import FastAPI, HTTPException
|
| 3 |
+
# from pydantic import BaseModel
|
| 4 |
+
# import asyncio
|
| 5 |
+
# from pipeline.pipeline_runner import run_pipeline_task
|
| 6 |
+
|
| 7 |
+
# app = FastAPI(title="AI ADD Maker API", version="1.0")
|
| 8 |
+
|
| 9 |
+
# # Request body schema
|
| 10 |
+
# class GenerateRequest(BaseModel):
|
| 11 |
+
# idea: str
|
| 12 |
+
|
| 13 |
+
# # Response schema (optional, for docs clarity)
|
| 14 |
+
# class GenerateResponse(BaseModel):
|
| 15 |
+
# task_id: str
|
| 16 |
+
# scenes: list
|
| 17 |
+
# images: list
|
| 18 |
+
# video: dict
|
| 19 |
+
# music: dict
|
| 20 |
+
# final_output: dict
|
| 21 |
+
|
| 22 |
+
# @app.post("/generate", response_model=GenerateResponse)
|
| 23 |
+
# async def generate_video(request: GenerateRequest):
|
| 24 |
+
# """
|
| 25 |
+
# Trigger the AI Ad/Video pipeline with a product or idea description.
|
| 26 |
+
# Returns all intermediate and final outputs.
|
| 27 |
+
# """
|
| 28 |
+
# idea = request.idea.strip()
|
| 29 |
+
# if not idea:
|
| 30 |
+
# raise HTTPException(status_code=400, detail="Idea cannot be empty.")
|
| 31 |
+
|
| 32 |
+
# try:
|
| 33 |
+
# # Run the pipeline asynchronously
|
| 34 |
+
# result = await run_pipeline_task(idea)
|
| 35 |
+
# return result
|
| 36 |
+
# except Exception as e:
|
| 37 |
+
# raise HTTPException(status_code=500, detail=f"Pipeline failed: {str(e)}")
|
| 38 |
+
|
| 39 |
+
# # Optional health check endpoint
|
| 40 |
+
# @app.get("/health")
|
| 41 |
+
# async def health_check():
|
| 42 |
+
# return {"status": "ok"}
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# # server.py
|
| 49 |
+
# import uuid
|
| 50 |
+
# import asyncio
|
| 51 |
+
# from fastapi import FastAPI, HTTPException
|
| 52 |
+
# from pydantic import BaseModel
|
| 53 |
+
# from queue import QueueManager # your queue.py module
|
| 54 |
+
# import logging
|
| 55 |
+
|
| 56 |
+
# # -------------------------------
|
| 57 |
+
# # Setup logging
|
| 58 |
+
# # -------------------------------
|
| 59 |
+
# logging.basicConfig(
|
| 60 |
+
# level=logging.INFO,
|
| 61 |
+
# format="%(asctime)s [%(levelname)s] %(message)s"
|
| 62 |
+
# )
|
| 63 |
+
|
| 64 |
+
# # -------------------------------
|
| 65 |
+
# # FastAPI app
|
| 66 |
+
# # -------------------------------
|
| 67 |
+
# app = FastAPI(title="ADD Maker Server", version="1.0")
|
| 68 |
+
|
| 69 |
+
# # -------------------------------
|
| 70 |
+
# # Pydantic models
|
| 71 |
+
# # -------------------------------
|
| 72 |
+
# class IdeaRequest(BaseModel):
|
| 73 |
+
# idea: str
|
| 74 |
+
|
| 75 |
+
# class ConfirmationRequest(BaseModel):
|
| 76 |
+
# task_id: str
|
| 77 |
+
# confirm: bool
|
| 78 |
+
|
| 79 |
+
# # -------------------------------
|
| 80 |
+
# # Queue Manager Instance
|
| 81 |
+
# # -------------------------------
|
| 82 |
+
# queue_manager = QueueManager()
|
| 83 |
+
|
| 84 |
+
# # In-memory task storage for confirmation
|
| 85 |
+
# pending_confirmations = {} # task_id -> asyncio.Event
|
| 86 |
+
|
| 87 |
+
# # -------------------------------
|
| 88 |
+
# # Helper function for confirmation
|
| 89 |
+
# # -------------------------------
|
| 90 |
+
# async def wait_for_confirmation(task_id: str, timeout: int = 120):
|
| 91 |
+
# """Wait for user confirmation or auto-confirm after timeout."""
|
| 92 |
+
# event = asyncio.Event()
|
| 93 |
+
# pending_confirmations[task_id] = event
|
| 94 |
+
# try:
|
| 95 |
+
# await asyncio.wait_for(event.wait(), timeout=timeout)
|
| 96 |
+
# logging.info(f"Task {task_id} confirmed by user.")
|
| 97 |
+
# return True
|
| 98 |
+
# except asyncio.TimeoutError:
|
| 99 |
+
# logging.info(f"Task {task_id} auto-confirmed after {timeout} seconds.")
|
| 100 |
+
# return True
|
| 101 |
+
# finally:
|
| 102 |
+
# pending_confirmations.pop(task_id, None)
|
| 103 |
+
|
| 104 |
+
# # -------------------------------
|
| 105 |
+
# # API Endpoints
|
| 106 |
+
# # -------------------------------
|
| 107 |
+
# @app.post("/submit_idea")
|
| 108 |
+
# async def submit_idea(request: IdeaRequest):
|
| 109 |
+
# task_id = str(uuid.uuid4())
|
| 110 |
+
# logging.info(f"Received idea: {request.idea} | Task ID: {task_id}")
|
| 111 |
+
|
| 112 |
+
# # Push task to queue
|
| 113 |
+
# await queue_manager.enqueue({
|
| 114 |
+
# "task_id": task_id,
|
| 115 |
+
# "idea": request.idea
|
| 116 |
+
# })
|
| 117 |
+
|
| 118 |
+
# # Start confirmation wait in background
|
| 119 |
+
# asyncio.create_task(wait_for_confirmation(task_id))
|
| 120 |
+
|
| 121 |
+
# return {"status": "submitted", "task_id": task_id, "message": "Idea received, waiting for confirmation."}
|
| 122 |
+
|
| 123 |
+
# @app.post("/confirm")
|
| 124 |
+
# async def confirm_task(request: ConfirmationRequest):
|
| 125 |
+
# task_id = request.task_id
|
| 126 |
+
# if task_id not in pending_confirmations:
|
| 127 |
+
# raise HTTPException(status_code=404, detail="Task not pending confirmation or already confirmed.")
|
| 128 |
+
|
| 129 |
+
# if request.confirm:
|
| 130 |
+
# pending_confirmations[task_id].set()
|
| 131 |
+
# return {"status": "confirmed", "task_id": task_id}
|
| 132 |
+
# else:
|
| 133 |
+
# return {"status": "rejected", "task_id": task_id}
|
| 134 |
+
|
| 135 |
+
# @app.get("/")
|
| 136 |
+
# async def health_check():
|
| 137 |
+
# return {"status": "running"}
|
| 138 |
+
|
| 139 |
+
# # -------------------------------
|
| 140 |
+
# # Startup / Shutdown events
|
| 141 |
+
# # -------------------------------
|
| 142 |
+
# @app.on_event("startup")
|
| 143 |
+
# async def startup_event():
|
| 144 |
+
# logging.info("Server starting up...")
|
| 145 |
+
|
| 146 |
+
# @app.on_event("shutdown")
|
| 147 |
+
# async def shutdown_event():
|
| 148 |
+
# logging.info("Server shutting down...")
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# # best
|
| 153 |
+
# # server.py
|
| 154 |
+
# import uuid
|
| 155 |
+
# import asyncio
|
| 156 |
+
# from fastapi import FastAPI, HTTPException
|
| 157 |
+
# from pydantic import BaseModel
|
| 158 |
+
# from services import queue_manager as queue_manager # β
import your actual queue module
|
| 159 |
+
# import logging
|
| 160 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# # -------------------------------
|
| 164 |
+
# # Setup logging
|
| 165 |
+
# # -------------------------------
|
| 166 |
+
# logging.basicConfig(
|
| 167 |
+
# level=logging.INFO,
|
| 168 |
+
# format="%(asctime)s [%(levelname)s] %(message)s"
|
| 169 |
+
# )
|
| 170 |
+
|
| 171 |
+
# # -------------------------------
|
| 172 |
+
# # FastAPI app
|
| 173 |
+
# # -------------------------------
|
| 174 |
+
# app = FastAPI(title="AI ADD Generator Server", version="1.0")
|
| 175 |
+
# # Enable CORS for local testing
|
| 176 |
+
# app.add_middleware(
|
| 177 |
+
# CORSMiddleware,
|
| 178 |
+
# allow_origins=["*"], # Allow requests from anywhere (for testing)
|
| 179 |
+
# allow_credentials=True,
|
| 180 |
+
# allow_methods=["*"], # Allow all HTTP methods
|
| 181 |
+
# allow_headers=["*"], # Allow all headers
|
| 182 |
+
# )
|
| 183 |
+
|
| 184 |
+
# # -------------------------------
|
| 185 |
+
# # Pydantic models
|
| 186 |
+
# # -------------------------------
|
| 187 |
+
# class IdeaRequest(BaseModel):
|
| 188 |
+
# idea: str
|
| 189 |
+
|
| 190 |
+
# class ConfirmationRequest(BaseModel):
|
| 191 |
+
# task_id: str
|
| 192 |
+
# confirm: bool
|
| 193 |
+
|
| 194 |
+
# # -------------------------------
|
| 195 |
+
# # In-memory confirmation tracker
|
| 196 |
+
# # -------------------------------
|
| 197 |
+
# pending_confirmations = {} # task_id -> asyncio.Event
|
| 198 |
+
|
| 199 |
+
# # -------------------------------
|
| 200 |
+
# # Helper function for confirmation
|
| 201 |
+
# # -------------------------------
|
| 202 |
+
# async def wait_for_confirmation(task_id: str, timeout: int = 120):
|
| 203 |
+
# """Wait for user confirmation or auto-confirm after timeout."""
|
| 204 |
+
# event = asyncio.Event()
|
| 205 |
+
# pending_confirmations[task_id] = event
|
| 206 |
+
# try:
|
| 207 |
+
# await asyncio.wait_for(event.wait(), timeout=timeout)
|
| 208 |
+
# logging.info(f"β
Task {task_id} confirmed by user.")
|
| 209 |
+
# await queue_manager.confirm_task(task_id)
|
| 210 |
+
# return True
|
| 211 |
+
# except asyncio.TimeoutError:
|
| 212 |
+
# logging.info(f"β Task {task_id} auto-confirmed after {timeout}s.")
|
| 213 |
+
# await queue_manager.confirm_task(task_id)
|
| 214 |
+
# return True
|
| 215 |
+
# finally:
|
| 216 |
+
# pending_confirmations.pop(task_id, None)
|
| 217 |
+
|
| 218 |
+
# # -------------------------------
|
| 219 |
+
# # API Endpoints
|
| 220 |
+
# # -------------------------------
|
| 221 |
+
|
| 222 |
+
# @app.post("/submit_idea")
|
| 223 |
+
# async def submit_idea(request: IdeaRequest):
|
| 224 |
+
# """Receives a new ad idea and enqueues it."""
|
| 225 |
+
# task_id = await queue_manager.add_task(request.idea)
|
| 226 |
+
# logging.info(f"π‘ New idea received | Task ID: {task_id}")
|
| 227 |
+
|
| 228 |
+
# # Start confirmation listener
|
| 229 |
+
# asyncio.create_task(wait_for_confirmation(task_id))
|
| 230 |
+
|
| 231 |
+
# return {
|
| 232 |
+
# "status": "submitted",
|
| 233 |
+
# "task_id": task_id,
|
| 234 |
+
# "message": "Idea received. Waiting for user confirmation after script generation."
|
| 235 |
+
# }
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
# @app.post("/confirm")
|
| 239 |
+
# async def confirm_task(request: ConfirmationRequest):
|
| 240 |
+
# """Confirms a paused task and continues the pipeline."""
|
| 241 |
+
# task_id = request.task_id
|
| 242 |
+
# if task_id not in pending_confirmations:
|
| 243 |
+
# raise HTTPException(status_code=404, detail="Task not pending confirmation or already confirmed.")
|
| 244 |
+
|
| 245 |
+
# if request.confirm:
|
| 246 |
+
# pending_confirmations[task_id].set()
|
| 247 |
+
# return {"status": "confirmed", "task_id": task_id}
|
| 248 |
+
# else:
|
| 249 |
+
# return {"status": "rejected", "task_id": task_id}
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# @app.get("/status/{task_id}")
|
| 253 |
+
# async def get_status(task_id: str):
|
| 254 |
+
# """Check the current status of a task."""
|
| 255 |
+
# status = queue_manager.get_task_status(task_id)
|
| 256 |
+
# if not status:
|
| 257 |
+
# raise HTTPException(status_code=404, detail="Task not found.")
|
| 258 |
+
# return status
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# @app.get("/")
|
| 262 |
+
# async def health_check():
|
| 263 |
+
# return {"status": "running", "message": "AI ADD Generator is live."}
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
# # -------------------------------
|
| 267 |
+
# # Startup / Shutdown events
|
| 268 |
+
# # -------------------------------
|
| 269 |
+
# @app.on_event("startup")
|
| 270 |
+
# async def startup_event():
|
| 271 |
+
# logging.info("π Server starting up...")
|
| 272 |
+
# queue_manager.start_worker() # β
Start async worker loop
|
| 273 |
+
|
| 274 |
+
# @app.on_event("shutdown")
|
| 275 |
+
# async def shutdown_event():
|
| 276 |
+
# logging.info("π Server shutting down...")
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
import uuid
|
| 281 |
+
import asyncio
|
| 282 |
+
from fastapi import FastAPI, HTTPException
|
| 283 |
+
from pydantic import BaseModel
|
| 284 |
+
from services import queue_manager # β
import your actual queue module
|
| 285 |
+
import logging
|
| 286 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 287 |
+
|
| 288 |
+
# -------------------------------
|
| 289 |
+
# Setup logging
|
| 290 |
+
# -------------------------------
|
| 291 |
+
logging.basicConfig(
|
| 292 |
+
level=logging.INFO,
|
| 293 |
+
format="%(asctime)s [%(levelname)s] %(message)s"
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
# -------------------------------
|
| 297 |
+
# FastAPI app
|
| 298 |
+
# -------------------------------
|
| 299 |
+
app = FastAPI(title="AI ADD Generator Server", version="1.0")
|
| 300 |
+
|
| 301 |
+
# Enable CORS for local testing
|
| 302 |
+
app.add_middleware(
|
| 303 |
+
CORSMiddleware,
|
| 304 |
+
allow_origins=["*"],
|
| 305 |
+
allow_credentials=True,
|
| 306 |
+
allow_methods=["*"],
|
| 307 |
+
allow_headers=["*"],
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# -------------------------------
|
| 311 |
+
# Pydantic models
|
| 312 |
+
# -------------------------------
|
| 313 |
+
class IdeaRequest(BaseModel):
|
| 314 |
+
idea: str
|
| 315 |
+
|
| 316 |
+
class ConfirmationRequest(BaseModel):
|
| 317 |
+
task_id: str
|
| 318 |
+
confirm: bool
|
| 319 |
+
|
| 320 |
+
# -------------------------------
|
| 321 |
+
# In-memory confirmation tracker
|
| 322 |
+
# -------------------------------
|
| 323 |
+
pending_confirmations = {} # task_id -> asyncio.Event
|
| 324 |
+
script_results = {} # task_id -> generated script for confirmation
|
| 325 |
+
|
| 326 |
+
# -------------------------------
|
| 327 |
+
# API Endpoints
|
| 328 |
+
# -------------------------------
|
| 329 |
+
@app.post("/submit_idea")
|
| 330 |
+
async def submit_idea(request: IdeaRequest):
|
| 331 |
+
"""Receives a new ad idea and enqueues it."""
|
| 332 |
+
task_id = await queue_manager.add_task(request.idea)
|
| 333 |
+
logging.info(f"π‘ New idea received | Task ID: {task_id}")
|
| 334 |
+
|
| 335 |
+
# Start worker listener
|
| 336 |
+
asyncio.create_task(queue_manager.wait_for_script(task_id, script_results))
|
| 337 |
+
|
| 338 |
+
return {
|
| 339 |
+
"status": "submitted",
|
| 340 |
+
"task_id": task_id,
|
| 341 |
+
"message": "Idea received. Script will be generated shortly.",
|
| 342 |
+
}
|
| 343 |
+
|
| 344 |
+
@app.post("/confirm")
|
| 345 |
+
async def confirm_task(request: ConfirmationRequest):
|
| 346 |
+
"""Confirms a paused task, generates story, and returns full JSON."""
|
| 347 |
+
task_id = request.task_id
|
| 348 |
+
task = queue_manager.get_task_status(task_id)
|
| 349 |
+
if not task:
|
| 350 |
+
raise HTTPException(status_code=404, detail="Task not found.")
|
| 351 |
+
|
| 352 |
+
if task["status"] != queue_manager.TaskStatus.WAITING_CONFIRMATION:
|
| 353 |
+
raise HTTPException(status_code=400, detail="Task not waiting for confirmation.")
|
| 354 |
+
|
| 355 |
+
if request.confirm:
|
| 356 |
+
# Confirm task
|
| 357 |
+
await queue_manager.confirm_task(task_id)
|
| 358 |
+
logging.info(f"β
Task {task_id} confirmed by user.")
|
| 359 |
+
|
| 360 |
+
# Generate story immediately
|
| 361 |
+
script_result = task["result"]["script"]
|
| 362 |
+
story_result = await queue_manager.generate_story_after_confirm(script_result)
|
| 363 |
+
task["result"]["story_script"] = story_result
|
| 364 |
+
task["status"] = queue_manager.TaskStatus.COMPLETED
|
| 365 |
+
|
| 366 |
+
logging.info(f"π¬ Task {task_id} story generated and task completed.")
|
| 367 |
+
return {"status": "completed", "task": task}
|
| 368 |
+
|
| 369 |
+
else:
|
| 370 |
+
task["status"] = queue_manager.TaskStatus.FAILED
|
| 371 |
+
return {"status": "rejected", "task_id": task_id}
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
@app.get("/status/{task_id}")
|
| 375 |
+
async def get_status(task_id: str):
|
| 376 |
+
"""Check the current status of a task."""
|
| 377 |
+
task = queue_manager.get_task_status(task_id)
|
| 378 |
+
if not task:
|
| 379 |
+
raise HTTPException(status_code=404, detail="Task not found.")
|
| 380 |
+
|
| 381 |
+
# If waiting confirmation, return script only
|
| 382 |
+
if task["status"] == queue_manager.TaskStatus.WAITING_CONFIRMATION:
|
| 383 |
+
return {"status": task["status"], "script": task["result"]["script"]}
|
| 384 |
+
|
| 385 |
+
return task
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
@app.get("/")
|
| 389 |
+
async def health_check():
|
| 390 |
+
return {"status": "running", "message": "AI ADD Generator is live."}
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# -------------------------------
|
| 394 |
+
# Startup / Shutdown events
|
| 395 |
+
# -------------------------------
|
| 396 |
+
@app.on_event("startup")
|
| 397 |
+
async def startup_event():
|
| 398 |
+
logging.info("π Server starting up...")
|
| 399 |
+
queue_manager.start_worker()
|
| 400 |
+
|
| 401 |
+
@app.on_event("shutdown")
|
| 402 |
+
async def shutdown_event():
|
| 403 |
+
logging.info("π Server shutting down...")
|
core/__init__.py
ADDED
|
File without changes
|
core/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (160 Bytes). View file
|
|
|
core/__pycache__/script_gen.cpython-311.pyc
ADDED
|
Binary file (3 kB). View file
|
|
|
core/__pycache__/story_script.cpython-311.pyc
ADDED
|
Binary file (7.89 kB). View file
|
|
|
core/assembler.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/assembler.py
|
| 2 |
+
"""
|
| 3 |
+
Assembler combines video + music and optionally overlays images/text,
|
| 4 |
+
and produces final assembled output. Uses ffmpeg for merging audio/video.
|
| 5 |
+
Returns a dict with final path and metadata.
|
| 6 |
+
"""
|
| 7 |
+
import subprocess
|
| 8 |
+
import time
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Dict
|
| 11 |
+
from config import OUTPUT_DIR
|
| 12 |
+
|
| 13 |
+
OUTPUT_DIR = Path(OUTPUT_DIR)
|
| 14 |
+
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
| 15 |
+
|
| 16 |
+
def assemble_video(video_result: Dict, music_result: Dict, out_name: str = None) -> Dict:
|
| 17 |
+
"""
|
| 18 |
+
video_result: dict returned from video_generator
|
| 19 |
+
music_result: dict returned from music_generator
|
| 20 |
+
Returns dict { "final_path":..., "duration":..., "meta":... }
|
| 21 |
+
"""
|
| 22 |
+
t0 = time.time()
|
| 23 |
+
video_path = Path(video_result.get("video_path"))
|
| 24 |
+
music_path = Path(music_result.get("music_path"))
|
| 25 |
+
out_name = out_name or f"final_{int(time.time()*1000)}.mp4"
|
| 26 |
+
out_path = OUTPUT_DIR / out_name
|
| 27 |
+
|
| 28 |
+
# If ffmpeg is available, merge audio and video
|
| 29 |
+
if video_path.exists() and music_path.exists():
|
| 30 |
+
cmd = [
|
| 31 |
+
"ffmpeg", "-y",
|
| 32 |
+
"-i", str(video_path),
|
| 33 |
+
"-i", str(music_path),
|
| 34 |
+
"-c:v", "copy", # copy video stream
|
| 35 |
+
"-c:a", "aac",
|
| 36 |
+
"-shortest",
|
| 37 |
+
str(out_path)
|
| 38 |
+
]
|
| 39 |
+
try:
|
| 40 |
+
subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
| 41 |
+
duration = video_result.get("duration", 0.0)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"[assembler] ffmpeg merge failed: {e}. Creating placeholder final output.")
|
| 44 |
+
with open(out_path, "wb") as f:
|
| 45 |
+
f.write(b"")
|
| 46 |
+
duration = 0.0
|
| 47 |
+
else:
|
| 48 |
+
# If audio or video missing, create a placeholder
|
| 49 |
+
with open(out_path, "wb") as f:
|
| 50 |
+
f.write(b"")
|
| 51 |
+
duration = 0.0
|
| 52 |
+
|
| 53 |
+
meta = {
|
| 54 |
+
"video_src": str(video_path),
|
| 55 |
+
"music_src": str(music_path),
|
| 56 |
+
"assembled_at": time.time() - t0
|
| 57 |
+
}
|
| 58 |
+
return {"final_path": str(out_path), "duration": duration, "meta": meta}
|
core/image_generator.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/image_generator.py
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionXLPipeline
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import List
|
| 8 |
+
|
| 9 |
+
# ---------------- MODEL CONFIG ----------------
|
| 10 |
+
MODEL_REPO = "SG161222/RealVisXL_V4.0"
|
| 11 |
+
MODEL_FILENAME = "realvisxlV40_v40LightningBakedvae.safetensors"
|
| 12 |
+
MODEL_DIR = Path("/tmp/models/realvisxl_v4")
|
| 13 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# ---------------- MODEL DOWNLOAD ----------------
|
| 16 |
+
def download_model() -> Path:
|
| 17 |
+
"""
|
| 18 |
+
Downloads RealVisXL V4.0 model if not present.
|
| 19 |
+
Returns the local model path.
|
| 20 |
+
"""
|
| 21 |
+
model_path = MODEL_DIR / MODEL_FILENAME
|
| 22 |
+
if not model_path.exists():
|
| 23 |
+
print("[ImageGen] Downloading RealVisXL V4.0 model...")
|
| 24 |
+
model_path = hf_hub_download(
|
| 25 |
+
repo_id=MODEL_REPO,
|
| 26 |
+
filename=MODEL_FILENAME,
|
| 27 |
+
local_dir=str(MODEL_DIR),
|
| 28 |
+
force_download=False,
|
| 29 |
+
)
|
| 30 |
+
print(f"[ImageGen] Model downloaded to: {model_path}")
|
| 31 |
+
else:
|
| 32 |
+
print("[ImageGen] Model already exists. Skipping download.")
|
| 33 |
+
return model_path
|
| 34 |
+
|
| 35 |
+
# ---------------- PIPELINE LOAD ----------------
|
| 36 |
+
def load_pipeline() -> StableDiffusionXLPipeline:
|
| 37 |
+
"""
|
| 38 |
+
Loads the RealVisXL V4.0 model for image generation.
|
| 39 |
+
"""
|
| 40 |
+
model_path = download_model()
|
| 41 |
+
print("[ImageGen] Loading model into pipeline...")
|
| 42 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
| 43 |
+
str(model_path),
|
| 44 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 45 |
+
)
|
| 46 |
+
if torch.cuda.is_available():
|
| 47 |
+
pipe.to("cuda")
|
| 48 |
+
print("[ImageGen] Model ready.")
|
| 49 |
+
return pipe
|
| 50 |
+
|
| 51 |
+
# ---------------- GLOBAL PIPELINE CACHE ----------------
|
| 52 |
+
pipe: StableDiffusionXLPipeline | None = None
|
| 53 |
+
|
| 54 |
+
# ---------------- IMAGE GENERATION ----------------
|
| 55 |
+
def generate_images(prompt: str, seed: int = None, num_images: int = 3) -> List:
|
| 56 |
+
"""
|
| 57 |
+
Generates high-quality images using RealVisXL V4.0.
|
| 58 |
+
Supports deterministic generation using a seed.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
prompt (str): Text prompt for image generation.
|
| 62 |
+
seed (int, optional): Seed for deterministic generation.
|
| 63 |
+
num_images (int): Number of images to generate.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
List: Generated PIL images.
|
| 67 |
+
"""
|
| 68 |
+
global pipe
|
| 69 |
+
if pipe is None:
|
| 70 |
+
pipe = load_pipeline()
|
| 71 |
+
|
| 72 |
+
print(f"[ImageGen] Generating {num_images} image(s) for prompt: '{prompt}' with seed={seed}")
|
| 73 |
+
images = []
|
| 74 |
+
|
| 75 |
+
for i in range(num_images):
|
| 76 |
+
generator = None
|
| 77 |
+
if seed is not None:
|
| 78 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 79 |
+
generator = torch.Generator(device).manual_seed(seed + i) # slightly vary keyframes
|
| 80 |
+
|
| 81 |
+
result = pipe(prompt, num_inference_steps=30, generator=generator).images[0]
|
| 82 |
+
images.append(result)
|
| 83 |
+
|
| 84 |
+
print(f"[ImageGen] Generated {len(images)} images successfully.")
|
| 85 |
+
return images
|
core/music_generator.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/music_generator.py
|
| 2 |
+
"""
|
| 3 |
+
Music generator stub. You can plug in a TTS or music model (Coqui, MusicLM, etc.)
|
| 4 |
+
Returns dict: {"music_path": ..., "duration": ..., "model": ...}
|
| 5 |
+
"""
|
| 6 |
+
import asyncio
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import time
|
| 9 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 10 |
+
from config import OUTPUT_DIR
|
| 11 |
+
from typing import Dict
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
OUTPUT_DIR = Path(OUTPUT_DIR)
|
| 16 |
+
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
| 17 |
+
_executor = ThreadPoolExecutor(max_workers=1)
|
| 18 |
+
|
| 19 |
+
def _sync_generate_music(idea: str, out_path: Path, bpm=100):
|
| 20 |
+
"""
|
| 21 |
+
Replace with your real music/TTS generator.
|
| 22 |
+
For now this creates a placeholder file and metadata.
|
| 23 |
+
"""
|
| 24 |
+
t0 = time.time()
|
| 25 |
+
out_path.parent.mkdir(parents=True, exist_ok=True)
|
| 26 |
+
with open(out_path, "wb") as f:
|
| 27 |
+
f.write(b"") # replace with real audio bytes
|
| 28 |
+
meta = {"prompt": idea, "bpm": bpm, "time_taken": time.time() - t0}
|
| 29 |
+
return {"music_path": str(out_path), "duration": 3.0, "meta": meta}
|
| 30 |
+
|
| 31 |
+
async def generate_music(idea: str) -> Dict:
|
| 32 |
+
loop = asyncio.get_event_loop()
|
| 33 |
+
out_path = OUTPUT_DIR / f"music_{int(time.time()*1000)}.wav"
|
| 34 |
+
result = await loop.run_in_executor(_executor, _sync_generate_music, idea, out_path)
|
| 35 |
+
return result
|
core/script_gen.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # script_gen.py
|
| 2 |
+
# import os
|
| 3 |
+
# import asyncio
|
| 4 |
+
# import httpx
|
| 5 |
+
# import logging
|
| 6 |
+
# from dotenv import load_dotenv
|
| 7 |
+
|
| 8 |
+
# dotenv_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
|
| 9 |
+
# load_dotenv(dotenv_path)
|
| 10 |
+
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 11 |
+
|
| 12 |
+
# OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 13 |
+
# MODEL_NAME = "deepseek/deepseek-r1-distill-llama-70b:free"
|
| 14 |
+
# OPENROUTER_URL = f"https://openrouter.ai/api/v1/chat/completions"
|
| 15 |
+
|
| 16 |
+
# async def generate_script(idea: str) -> str:
|
| 17 |
+
# """
|
| 18 |
+
# Generate a highly interactive ad script from user idea.
|
| 19 |
+
# Includes detailed expressions, actions, and minute details.
|
| 20 |
+
# """
|
| 21 |
+
# prompt = f"""
|
| 22 |
+
# You are a professional ad writer.
|
| 23 |
+
# Take this idea and generate a fun, interactive, and detailed ad script.
|
| 24 |
+
# Include **minute expressions, subtle actions, emotions, and character reactions**.
|
| 25 |
+
# Idea: {idea}
|
| 26 |
+
# The script should be ready for storyboard creation.
|
| 27 |
+
# """
|
| 28 |
+
|
| 29 |
+
# headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 30 |
+
# payload = {
|
| 31 |
+
# "model": MODEL_NAME,
|
| 32 |
+
# "messages": [{"role": "user", "content": prompt}],
|
| 33 |
+
# "temperature": 0.8,
|
| 34 |
+
# "max_tokens": 1200
|
| 35 |
+
# }
|
| 36 |
+
|
| 37 |
+
# async with httpx.AsyncClient(timeout=120) as client:
|
| 38 |
+
# response = await client.post(OPENROUTER_URL, json=payload, headers=headers)
|
| 39 |
+
# response.raise_for_status()
|
| 40 |
+
# data = response.json()
|
| 41 |
+
|
| 42 |
+
# script = data["choices"][0]["message"]["content"]
|
| 43 |
+
# logging.info("Script generated successfully")
|
| 44 |
+
# return script
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# script_gen.py
|
| 49 |
+
import os
|
| 50 |
+
import asyncio
|
| 51 |
+
import httpx
|
| 52 |
+
import logging
|
| 53 |
+
from dotenv import load_dotenv
|
| 54 |
+
|
| 55 |
+
dotenv_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
|
| 56 |
+
load_dotenv(dotenv_path)
|
| 57 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 58 |
+
|
| 59 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 60 |
+
MODEL_NAME = "deepseek/deepseek-r1-distill-llama-70b:free"
|
| 61 |
+
OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 62 |
+
|
| 63 |
+
async def generate_script(idea: str) -> str:
|
| 64 |
+
"""
|
| 65 |
+
Generate a short, funny, no-dialogue ad script based on a user idea.
|
| 66 |
+
The script should be written in plain text β simple narrative form,
|
| 67 |
+
no markdown, no camera angles, and no stage directions.
|
| 68 |
+
Just like:
|
| 69 |
+
A guy sits in a quiet library. He slowly opens a packet of Layβs...
|
| 70 |
+
"""
|
| 71 |
+
prompt = f"""
|
| 72 |
+
You are a creative ad script writer.
|
| 73 |
+
Write a short, funny, no-dialogue ad script from this idea: "{idea}".
|
| 74 |
+
Keep it simple and cinematic.
|
| 75 |
+
Use plain text only, with minimal expressions.
|
| 76 |
+
No markdown, no numbering, no headings, no scene titles.
|
| 77 |
+
Just write it like a mini story in clean text form.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 81 |
+
payload = {
|
| 82 |
+
"model": MODEL_NAME,
|
| 83 |
+
"messages": [{"role": "user", "content": prompt}],
|
| 84 |
+
"temperature": 0.8,
|
| 85 |
+
"max_tokens": 600
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
async with httpx.AsyncClient(timeout=120) as client:
|
| 89 |
+
response = await client.post(OPENROUTER_URL, json=payload, headers=headers)
|
| 90 |
+
response.raise_for_status()
|
| 91 |
+
data = response.json()
|
| 92 |
+
|
| 93 |
+
script = data["choices"][0]["message"]["content"].strip()
|
| 94 |
+
logging.info("Simple script generated successfully")
|
| 95 |
+
return script
|
| 96 |
+
|
| 97 |
+
# Example usage (for testing)
|
| 98 |
+
# asyncio.run(generate_script("Layβs funny ad in a library with no dialogues"))
|
core/script_generator.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/script_generator.py
|
| 2 |
+
import asyncio
|
| 3 |
+
import uuid
|
| 4 |
+
from typing import List, Dict
|
| 5 |
+
from config import OPENROUTER_API_KEY
|
| 6 |
+
from core.seed_manager import SeedManager
|
| 7 |
+
import httpx
|
| 8 |
+
import json
|
| 9 |
+
|
| 10 |
+
# Initialize seed manager
|
| 11 |
+
seed_manager = SeedManager()
|
| 12 |
+
|
| 13 |
+
# ---------------- OPENROUTER LLM CALL ----------------
|
| 14 |
+
async def _call_openrouter_llm(prompt: str) -> str:
|
| 15 |
+
"""
|
| 16 |
+
Calls OpenRouter LLM to generate proposed video script.
|
| 17 |
+
Returns the raw text script.
|
| 18 |
+
"""
|
| 19 |
+
url = "https://api.openrouter.ai/v1/chat/completions"
|
| 20 |
+
headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 21 |
+
payload = {
|
| 22 |
+
"model": "gpt-4.1-mini", # powerful and suitable for script generation
|
| 23 |
+
"messages": [
|
| 24 |
+
{"role": "system", "content": "You are a professional creative video script writer."},
|
| 25 |
+
{"role": "user", "content": prompt}
|
| 26 |
+
],
|
| 27 |
+
"max_tokens": 1500,
|
| 28 |
+
"temperature": 0.7
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
async with httpx.AsyncClient(timeout=60) as client:
|
| 32 |
+
response = await client.post(url, json=payload, headers=headers)
|
| 33 |
+
response.raise_for_status()
|
| 34 |
+
data = response.json()
|
| 35 |
+
# OpenRouter returns message content in choices[0].message.content
|
| 36 |
+
return data["choices"][0]["message"]["content"]
|
| 37 |
+
|
| 38 |
+
# ---------------- SCRIPT PROCESSING ----------------
|
| 39 |
+
def parse_script_to_scenes(script_text: str) -> List[Dict]:
|
| 40 |
+
"""
|
| 41 |
+
Converts a script text into scene + keyframe JSON.
|
| 42 |
+
Each scene may have multiple keyframes.
|
| 43 |
+
Assigns unique scene_ids and seeds.
|
| 44 |
+
"""
|
| 45 |
+
scenes_json = []
|
| 46 |
+
scene_counter = 1
|
| 47 |
+
keyframe_counter = 1
|
| 48 |
+
|
| 49 |
+
lines = [line.strip() for line in script_text.split("\n") if line.strip()]
|
| 50 |
+
for line in lines:
|
| 51 |
+
# Generate a unique scene_id and seed for this scene
|
| 52 |
+
scene_id = scene_counter
|
| 53 |
+
seed = seed_manager.generate_seed(scene_id)
|
| 54 |
+
|
| 55 |
+
# We assume each line is a keyframe
|
| 56 |
+
scenes_json.append({
|
| 57 |
+
"scene": scene_counter,
|
| 58 |
+
"scene_id": scene_id,
|
| 59 |
+
"keyframe_number": keyframe_counter,
|
| 60 |
+
"description": line,
|
| 61 |
+
"camera": "default", # can be improved later
|
| 62 |
+
"seed": seed
|
| 63 |
+
})
|
| 64 |
+
|
| 65 |
+
keyframe_counter += 1
|
| 66 |
+
scene_counter += 1
|
| 67 |
+
|
| 68 |
+
return scenes_json
|
| 69 |
+
|
| 70 |
+
# ---------------- MAIN FUNCTION ----------------
|
| 71 |
+
async def generate_script_async(idea: str, user_confirmed: bool = True) -> List[Dict]:
|
| 72 |
+
"""
|
| 73 |
+
Full pipeline for script generation:
|
| 74 |
+
1. Generates proposed script from LLM
|
| 75 |
+
2. Waits for user confirmation
|
| 76 |
+
3. Converts confirmed script into scene + keyframe JSON
|
| 77 |
+
"""
|
| 78 |
+
prompt = f"Create a professional video script for: {idea}. Write each scene in one line."
|
| 79 |
+
raw_script = await _call_openrouter_llm(prompt)
|
| 80 |
+
|
| 81 |
+
# Here you can integrate actual user confirmation in your frontend
|
| 82 |
+
if not user_confirmed:
|
| 83 |
+
return [{"proposed_script": raw_script}]
|
| 84 |
+
|
| 85 |
+
# Convert approved script into structured scene/keyframe JSON
|
| 86 |
+
scenes = parse_script_to_scenes(raw_script)
|
| 87 |
+
return scenes
|
| 88 |
+
|
| 89 |
+
def generate_script(idea: str, user_confirmed: bool = True) -> List[Dict]:
|
| 90 |
+
"""
|
| 91 |
+
Synchronous wrapper for pipeline integration.
|
| 92 |
+
"""
|
| 93 |
+
return asyncio.get_event_loop().run_until_complete(
|
| 94 |
+
generate_script_async(idea, user_confirmed)
|
| 95 |
+
)
|
core/seed_manager.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# core/seed_manager.py
|
| 2 |
+
import json
|
| 3 |
+
import random
|
| 4 |
+
import threading
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
DATA_DIR = Path(__file__).resolve().parent.parent / "data"
|
| 8 |
+
SEED_FILE = DATA_DIR / "seeds.json"
|
| 9 |
+
SEED_FILE.parent.mkdir(parents=True, exist_ok=True)
|
| 10 |
+
|
| 11 |
+
_lock = threading.Lock()
|
| 12 |
+
|
| 13 |
+
class SeedManager:
|
| 14 |
+
"""
|
| 15 |
+
Persistent and thread-safe seed manager for reproducible image/video generation.
|
| 16 |
+
Maps: scene_id (str/int) -> seed (int)
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, path: Path = SEED_FILE):
|
| 20 |
+
self.path = path
|
| 21 |
+
self._load()
|
| 22 |
+
|
| 23 |
+
def _load(self):
|
| 24 |
+
"""Load seeds from disk safely."""
|
| 25 |
+
with _lock:
|
| 26 |
+
if self.path.exists():
|
| 27 |
+
try:
|
| 28 |
+
with open(self.path, "r", encoding="utf-8") as f:
|
| 29 |
+
self._store = json.load(f)
|
| 30 |
+
except Exception:
|
| 31 |
+
self._store = {}
|
| 32 |
+
else:
|
| 33 |
+
self._store = {}
|
| 34 |
+
|
| 35 |
+
def _save(self):
|
| 36 |
+
"""Save seeds to disk safely."""
|
| 37 |
+
with _lock:
|
| 38 |
+
with open(self.path, "w", encoding="utf-8") as f:
|
| 39 |
+
json.dump(self._store, f, indent=2)
|
| 40 |
+
|
| 41 |
+
def get_seed(self, scene_id: str | int) -> int | None:
|
| 42 |
+
"""Return existing seed for a scene_id or None if not set."""
|
| 43 |
+
return self._store.get(str(scene_id))
|
| 44 |
+
|
| 45 |
+
def store_seed(self, scene_id: str | int, seed: int):
|
| 46 |
+
"""Store a seed persistently for a given scene_id."""
|
| 47 |
+
self._store[str(scene_id)] = int(seed)
|
| 48 |
+
self._save()
|
| 49 |
+
|
| 50 |
+
def ensure_seed(self, scene_id: str | int) -> int:
|
| 51 |
+
"""
|
| 52 |
+
Return existing seed or generate/store a new one.
|
| 53 |
+
Guarantees deterministic reproducible seed for the same scene_id.
|
| 54 |
+
"""
|
| 55 |
+
s = self.get_seed(scene_id)
|
| 56 |
+
if s is None:
|
| 57 |
+
s = random.randint(0, 2**31 - 1)
|
| 58 |
+
self.store_seed(scene_id, s)
|
| 59 |
+
return s
|
| 60 |
+
|
| 61 |
+
def reset(self):
|
| 62 |
+
"""Clear all seeds (useful for testing or new projects)."""
|
| 63 |
+
with _lock:
|
| 64 |
+
self._store = {}
|
| 65 |
+
self._save()
|
core/story_script.py
ADDED
|
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # # story_script.py
|
| 2 |
+
# # import asyncio
|
| 3 |
+
# # import json
|
| 4 |
+
# # import logging
|
| 5 |
+
# # import random
|
| 6 |
+
|
| 7 |
+
# # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 8 |
+
|
| 9 |
+
# # async def generate_story(script: str) -> dict:
|
| 10 |
+
# # """
|
| 11 |
+
# # Convert the ad script into a structured storyboard JSON format:
|
| 12 |
+
# # - Characters
|
| 13 |
+
# # - Scenes with keyframes, camera instructions, and music
|
| 14 |
+
# # """
|
| 15 |
+
# # # Sample character extraction (for simplicity, can be improved)
|
| 16 |
+
# # characters = [{"name": name, "seed": idx+1} for idx, name in enumerate(["MainGuy", "Friend1", "Friend2"])]
|
| 17 |
+
|
| 18 |
+
# # # Split script into lines and create scenes (basic heuristic, can be improved)
|
| 19 |
+
# # lines = [line.strip() for line in script.split("\n") if line.strip()]
|
| 20 |
+
# # scenes = {}
|
| 21 |
+
# # for idx, line in enumerate(lines, start=1):
|
| 22 |
+
# # char = characters[idx % len(characters)]["name"]
|
| 23 |
+
# # seed = characters[idx % len(characters)]["seed"]
|
| 24 |
+
# # scenes[f"scene{idx}"] = {
|
| 25 |
+
# # "character": char,
|
| 26 |
+
# # "scene": line,
|
| 27 |
+
# # "keyframes": [
|
| 28 |
+
# # {
|
| 29 |
+
# # "seed": seed,
|
| 30 |
+
# # "keyframe1": f"{char} in action based on script line: '{line[:40]}...'",
|
| 31 |
+
# # "keyframe2": f"{char} expressive close-up reacting to: '{line[:40]}...'"
|
| 32 |
+
# # }
|
| 33 |
+
# # ],
|
| 34 |
+
# # "camera": "Medium shot with dynamic zoom-ins",
|
| 35 |
+
# # "music": "Appropriate upbeat or dramatic tune based on action"
|
| 36 |
+
# # }
|
| 37 |
+
|
| 38 |
+
# # storyboard = {
|
| 39 |
+
# # "characters": characters,
|
| 40 |
+
# # **scenes
|
| 41 |
+
# # }
|
| 42 |
+
|
| 43 |
+
# # logging.info("Story script generated successfully")
|
| 44 |
+
# # return storyboard
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# # # best
|
| 48 |
+
# # # story_script.py
|
| 49 |
+
# # import os
|
| 50 |
+
# # import asyncio
|
| 51 |
+
# # import httpx
|
| 52 |
+
# # import logging
|
| 53 |
+
# # from dotenv import load_dotenv
|
| 54 |
+
# # from dotenv import load_dotenv
|
| 55 |
+
|
| 56 |
+
# # dotenv_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
|
| 57 |
+
# # load_dotenv(dotenv_path)
|
| 58 |
+
|
| 59 |
+
# # load_dotenv()
|
| 60 |
+
# # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 61 |
+
|
| 62 |
+
# # OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 63 |
+
# # MODEL_NAME = "deepseek/deepseek-r1-distill-llama-70b:free"
|
| 64 |
+
# # OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 65 |
+
|
| 66 |
+
# # async def generate_story(script: str) -> dict:
|
| 67 |
+
# # """
|
| 68 |
+
# # Convert the ad script into a structured storyboard JSON using AI.
|
| 69 |
+
# # The JSON format includes:
|
| 70 |
+
# # - characters (with seeds)
|
| 71 |
+
# # - scenes (character, scene description, keyframes, camera, music)
|
| 72 |
+
# # """
|
| 73 |
+
# # prompt = f"""
|
| 74 |
+
# # You are a professional ad storyboard generator.
|
| 75 |
+
# # Take this ad script and convert it into a **storyboard JSON**.
|
| 76 |
+
# # Follow this format exactly:
|
| 77 |
+
|
| 78 |
+
# # ADD {{
|
| 79 |
+
# # "characters": [
|
| 80 |
+
# # {{"name": "MainGuy", "seed": 1}},
|
| 81 |
+
# # {{"name": "Friend1", "seed": 2}},
|
| 82 |
+
# # {{"name": "Friend2", "seed": 3}}
|
| 83 |
+
# # ],
|
| 84 |
+
# # "scene1": {{
|
| 85 |
+
# # "character": "MainGuy",
|
| 86 |
+
# # "scene": "Description of the scene",
|
| 87 |
+
# # "keyframes": [
|
| 88 |
+
# # {{
|
| 89 |
+
# # "seed": 1,
|
| 90 |
+
# # "keyframe1": "First keyframe description",
|
| 91 |
+
# # "keyframe2": "Second keyframe description"
|
| 92 |
+
# # }}
|
| 93 |
+
# # ],
|
| 94 |
+
# # "camera": "Camera instructions",
|
| 95 |
+
# # "music": "Music instructions"
|
| 96 |
+
# # }}
|
| 97 |
+
# # ...
|
| 98 |
+
# # }}
|
| 99 |
+
|
| 100 |
+
# # Ensure:
|
| 101 |
+
# # - Use the **script lines as scenes**.
|
| 102 |
+
# # - Assign characters logically to actions.
|
| 103 |
+
# # - Provide **keyframes, camera, and music**.
|
| 104 |
+
# # - Return **valid JSON only**, no extra text.
|
| 105 |
+
# # Script:
|
| 106 |
+
# # \"\"\"{script}\"\"\"
|
| 107 |
+
# # """
|
| 108 |
+
|
| 109 |
+
# # headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 110 |
+
# # payload = {
|
| 111 |
+
# # "model": MODEL_NAME,
|
| 112 |
+
# # "messages": [{"role": "user", "content": prompt}],
|
| 113 |
+
# # "temperature": 0.8,
|
| 114 |
+
# # "max_tokens": 1200
|
| 115 |
+
# # }
|
| 116 |
+
|
| 117 |
+
# # async with httpx.AsyncClient(timeout=120) as client:
|
| 118 |
+
# # response = await client.post(OPENROUTER_URL, json=payload, headers=headers)
|
| 119 |
+
# # response.raise_for_status()
|
| 120 |
+
# # data = response.json()
|
| 121 |
+
|
| 122 |
+
# # # AI returns the JSON as a string
|
| 123 |
+
# # story_json_str = data["choices"][0]["message"]["content"]
|
| 124 |
+
|
| 125 |
+
# # # Remove possible extra text before/after JSON (some AI outputs might wrap with "ADD {...}")
|
| 126 |
+
# # if story_json_str.startswith("ADD"):
|
| 127 |
+
# # story_json_str = story_json_str[story_json_str.find("{"):]
|
| 128 |
+
|
| 129 |
+
# # # Convert string to dict
|
| 130 |
+
# # try:
|
| 131 |
+
# # story_dict = eval(story_json_str) # safe because AI returns JSON-like dict
|
| 132 |
+
# # except Exception as e:
|
| 133 |
+
# # logging.error(f"Failed to parse story JSON: {e}")
|
| 134 |
+
# # story_dict = {}
|
| 135 |
+
|
| 136 |
+
# # logging.info("Story script generated successfully using AI")
|
| 137 |
+
# # return story_dict
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# # import os
|
| 143 |
+
# # import asyncio
|
| 144 |
+
# # import httpx
|
| 145 |
+
# # import logging
|
| 146 |
+
# # import json
|
| 147 |
+
# # from dotenv import load_dotenv
|
| 148 |
+
|
| 149 |
+
# # dotenv_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
|
| 150 |
+
# # load_dotenv(dotenv_path)
|
| 151 |
+
|
| 152 |
+
# # logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 153 |
+
|
| 154 |
+
# # OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 155 |
+
# # MODEL_NAME = "deepseek/deepseek-r1-distill-llama-70b:free"
|
| 156 |
+
# # OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 157 |
+
|
| 158 |
+
# # async def generate_story(script: str) -> dict:
|
| 159 |
+
# # """
|
| 160 |
+
# # Convert the ad script into a structured storyboard JSON using AI.
|
| 161 |
+
# # The JSON format includes:
|
| 162 |
+
# # - characters (with seeds)
|
| 163 |
+
# # - scenes (character, scene description, keyframes, camera, music)
|
| 164 |
+
# # """
|
| 165 |
+
# # prompt = f"""
|
| 166 |
+
# # You are a professional ad storyboard generator.
|
| 167 |
+
# # Take this ad script and convert it into a **storyboard JSON**.
|
| 168 |
+
# # Follow this format exactly:
|
| 169 |
+
|
| 170 |
+
# # ADD {{
|
| 171 |
+
# # "characters": [
|
| 172 |
+
# # {{"name": "MainGuy", "seed": 1}},
|
| 173 |
+
# # {{"name": "Friend1", "seed": 2}},
|
| 174 |
+
# # {{"name": "Friend2", "seed": 3}}
|
| 175 |
+
# # ],
|
| 176 |
+
# # "scene1": {{
|
| 177 |
+
# # "character": "MainGuy",
|
| 178 |
+
# # "scene": "Description of the scene",
|
| 179 |
+
# # "keyframes": [
|
| 180 |
+
# # {{
|
| 181 |
+
# # "seed": 1,
|
| 182 |
+
# # "keyframe1": "First keyframe description",
|
| 183 |
+
# # "keyframe2": "Second keyframe description"
|
| 184 |
+
# # }}
|
| 185 |
+
# # ],
|
| 186 |
+
# # "camera": "Camera instructions",
|
| 187 |
+
# # "music": "Music instructions"
|
| 188 |
+
# # }}
|
| 189 |
+
# # ...
|
| 190 |
+
# # }}
|
| 191 |
+
|
| 192 |
+
# # Ensure:
|
| 193 |
+
# # - Use the **script lines as scenes**.
|
| 194 |
+
# # - Assign characters logically to actions.
|
| 195 |
+
# # - Provide **keyframes, camera, and music**.
|
| 196 |
+
# # - Return **valid JSON only**, no extra text, no markdown, no ``` fences.
|
| 197 |
+
# # Script:
|
| 198 |
+
# # \"\"\"{script}\"\"\"
|
| 199 |
+
# # """
|
| 200 |
+
|
| 201 |
+
# # headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 202 |
+
# # payload = {
|
| 203 |
+
# # "model": MODEL_NAME,
|
| 204 |
+
# # "messages": [{"role": "user", "content": prompt}],
|
| 205 |
+
# # "temperature": 0.8,
|
| 206 |
+
# # "max_tokens": 1500
|
| 207 |
+
# # }
|
| 208 |
+
|
| 209 |
+
# # async with httpx.AsyncClient(timeout=120) as client:
|
| 210 |
+
# # response = await client.post(OPENROUTER_URL, json=payload, headers=headers)
|
| 211 |
+
# # response.raise_for_status()
|
| 212 |
+
# # data = response.json()
|
| 213 |
+
|
| 214 |
+
# # story_json_str = data["choices"][0]["message"]["content"]
|
| 215 |
+
|
| 216 |
+
# # # Clean unwanted wrappers
|
| 217 |
+
# # story_json_str = story_json_str.strip()
|
| 218 |
+
# # if story_json_str.startswith("ADD"):
|
| 219 |
+
# # story_json_str = story_json_str[story_json_str.find("{"):]
|
| 220 |
+
|
| 221 |
+
# # # Remove markdown fences
|
| 222 |
+
# # story_json_str = story_json_str.replace("```json", "").replace("```", "").strip()
|
| 223 |
+
|
| 224 |
+
# # # Parse safely
|
| 225 |
+
# # try:
|
| 226 |
+
# # story_dict = json.loads(story_json_str)
|
| 227 |
+
# # except json.JSONDecodeError as e:
|
| 228 |
+
# # logging.error(f"β Failed to parse story JSON properly: {e}")
|
| 229 |
+
# # story_dict = {"raw_output": story_json_str}
|
| 230 |
+
|
| 231 |
+
# # logging.info("Story script generated successfully using AI")
|
| 232 |
+
# # return story_dict
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# import os
|
| 236 |
+
# import asyncio
|
| 237 |
+
# import httpx
|
| 238 |
+
# import logging
|
| 239 |
+
# import json
|
| 240 |
+
# import re
|
| 241 |
+
# from dotenv import load_dotenv
|
| 242 |
+
|
| 243 |
+
# dotenv_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
|
| 244 |
+
# load_dotenv(dotenv_path)
|
| 245 |
+
|
| 246 |
+
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 247 |
+
|
| 248 |
+
# OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 249 |
+
# MODEL_NAME = "deepseek/deepseek-r1-distill-llama-70b:free"
|
| 250 |
+
# OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
# async def generate_story(script: str) -> dict:
|
| 254 |
+
# """
|
| 255 |
+
# Convert the ad script into a structured storyboard JSON using AI.
|
| 256 |
+
# Returns:
|
| 257 |
+
# {
|
| 258 |
+
# "raw_output": "<original AI string>",
|
| 259 |
+
# "parsed_output": <dict | None>
|
| 260 |
+
# }
|
| 261 |
+
# """
|
| 262 |
+
# prompt = f"""
|
| 263 |
+
# You are a professional ad storyboard generator.
|
| 264 |
+
# Take this ad script and convert it into a **storyboard JSON**.
|
| 265 |
+
# Follow this format exactly:
|
| 266 |
+
|
| 267 |
+
# ADD {{
|
| 268 |
+
# "characters": [
|
| 269 |
+
# {{"name": "MainGuy-", "seed": 1}},
|
| 270 |
+
# {{"name": "Friend1", "seed": 2}},
|
| 271 |
+
# {{"name": "Friend2", "seed": 3}}
|
| 272 |
+
# ],
|
| 273 |
+
# "scene1": {{
|
| 274 |
+
# "character": "MainGuy",
|
| 275 |
+
# "scene": "Description of the scene",
|
| 276 |
+
# "keyframes": [
|
| 277 |
+
# {{
|
| 278 |
+
# "seed": 1,
|
| 279 |
+
# "keyframe1": "First keyframe description",
|
| 280 |
+
# "keyframe2": "Second keyframe description"
|
| 281 |
+
# }}
|
| 282 |
+
# ],
|
| 283 |
+
# "camera": "Camera instructions",
|
| 284 |
+
# "music": "Music instructions"
|
| 285 |
+
# }}
|
| 286 |
+
# }}
|
| 287 |
+
|
| 288 |
+
# Ensure:
|
| 289 |
+
# - Each scene corresponds to a line in the script.
|
| 290 |
+
# - Assign logical characters.
|
| 291 |
+
# - Return only valid JSON (no markdown or explanations).
|
| 292 |
+
# Script:
|
| 293 |
+
# \"\"\"{script}\"\"\"
|
| 294 |
+
# """
|
| 295 |
+
|
| 296 |
+
# headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 297 |
+
# payload = {
|
| 298 |
+
# "model": MODEL_NAME,
|
| 299 |
+
# "messages": [{"role": "user", "content": prompt}],
|
| 300 |
+
# "temperature": 0.8,
|
| 301 |
+
# "max_tokens": 1500
|
| 302 |
+
# }
|
| 303 |
+
|
| 304 |
+
# async with httpx.AsyncClient(timeout=120) as client:
|
| 305 |
+
# response = await client.post(OPENROUTER_URL, json=payload, headers=headers)
|
| 306 |
+
# response.raise_for_status()
|
| 307 |
+
# data = response.json()
|
| 308 |
+
|
| 309 |
+
# story_json_str = data["choices"][0]["message"]["content"].strip()
|
| 310 |
+
# raw_output = story_json_str
|
| 311 |
+
|
| 312 |
+
# # --- Cleaning Stage ---
|
| 313 |
+
# story_json_str = story_json_str.strip()
|
| 314 |
+
# if story_json_str.startswith("ADD"):
|
| 315 |
+
# story_json_str = story_json_str[story_json_str.find("{"):]
|
| 316 |
+
|
| 317 |
+
# # Remove markdown code fences and artifacts
|
| 318 |
+
# story_json_str = story_json_str.replace("```json", "").replace("```", "").strip()
|
| 319 |
+
|
| 320 |
+
# # Remove unwanted triple quotes, trailing commas, and unescaped slashes
|
| 321 |
+
# story_json_str = re.sub(r',\s*}', '}', story_json_str)
|
| 322 |
+
# story_json_str = re.sub(r',\s*\]', ']', story_json_str)
|
| 323 |
+
# story_json_str = story_json_str.replace('\\"', '"').replace("\\'", "'")
|
| 324 |
+
|
| 325 |
+
# parsed_story = None
|
| 326 |
+
|
| 327 |
+
# # --- Parsing Stage ---
|
| 328 |
+
# try:
|
| 329 |
+
# parsed_story = json.loads(story_json_str)
|
| 330 |
+
# except json.JSONDecodeError:
|
| 331 |
+
# try:
|
| 332 |
+
# # Handle double-encoded or escaped JSON
|
| 333 |
+
# cleaned_str = bytes(story_json_str, "utf-8").decode("unicode_escape")
|
| 334 |
+
# parsed_story = json.loads(cleaned_str)
|
| 335 |
+
# except Exception as e:
|
| 336 |
+
# logging.error(f"β JSON parse failed after cleaning: {e}")
|
| 337 |
+
# parsed_story = None
|
| 338 |
+
|
| 339 |
+
# logging.info("β
Storyboard generation completed")
|
| 340 |
+
# return parsed_story
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
##best best
|
| 344 |
+
# import os
|
| 345 |
+
# import asyncio
|
| 346 |
+
# import httpx
|
| 347 |
+
# import logging
|
| 348 |
+
# import json
|
| 349 |
+
# import re
|
| 350 |
+
# from dotenv import load_dotenv
|
| 351 |
+
|
| 352 |
+
# dotenv_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
|
| 353 |
+
# load_dotenv(dotenv_path)
|
| 354 |
+
|
| 355 |
+
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 356 |
+
|
| 357 |
+
# OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 358 |
+
# MODEL_NAME = "deepseek/deepseek-r1-distill-llama-70b:free"
|
| 359 |
+
# OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
# async def generate_story(script: str) -> dict:
|
| 363 |
+
# """
|
| 364 |
+
# Convert the ad script into a structured storyboard JSON using AI.
|
| 365 |
+
# Always returns:
|
| 366 |
+
# {
|
| 367 |
+
# "raw_output": "<original text from AI>",
|
| 368 |
+
# "parsed_output": <dict or None>
|
| 369 |
+
# }
|
| 370 |
+
# """
|
| 371 |
+
# prompt = f"""
|
| 372 |
+
# You are a professional ad storyboard generator.
|
| 373 |
+
# Convert this ad script into a **storyboard JSON** only β no extra text.
|
| 374 |
+
|
| 375 |
+
# Format example:
|
| 376 |
+
# {{
|
| 377 |
+
# "characters": [
|
| 378 |
+
# {{"name": "MainGuy","Description":"complete decsripiton of the character", "seed": 1}},
|
| 379 |
+
# {{"name": "Dog","Description":"complete decsripiton of the character", "seed": 2}}
|
| 380 |
+
# ],
|
| 381 |
+
# "scene1": {{
|
| 382 |
+
# "character": "MainGuy",
|
| 383 |
+
# "scene": "Man wakes up late and rushes outside",
|
| 384 |
+
# "keyframes": [
|
| 385 |
+
# {{"seed": 1, "keyframe1": "Man stepping in puddle", "keyframe2": "Reaction close-up"}}
|
| 386 |
+
# ],
|
| 387 |
+
# "camera": "Medium shot with soft lighting",
|
| 388 |
+
# "music": "Playful upbeat tune"
|
| 389 |
+
# }}
|
| 390 |
+
# }}
|
| 391 |
+
# Script:
|
| 392 |
+
# \"\"\"{script}\"\"\"
|
| 393 |
+
# Return **only valid JSON**, no markdown or commentary.
|
| 394 |
+
# """
|
| 395 |
+
|
| 396 |
+
# headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 397 |
+
# payload = {
|
| 398 |
+
# "model": MODEL_NAME,
|
| 399 |
+
# "messages": [{"role": "user", "content": prompt}],
|
| 400 |
+
# "temperature": 0.7,
|
| 401 |
+
# "max_tokens": 1500
|
| 402 |
+
# }
|
| 403 |
+
|
| 404 |
+
# async with httpx.AsyncClient(timeout=120) as client:
|
| 405 |
+
# response = await client.post(OPENROUTER_URL, json=payload, headers=headers)
|
| 406 |
+
# response.raise_for_status()
|
| 407 |
+
# data = response.json()
|
| 408 |
+
|
| 409 |
+
# story_json_str = data["choices"][0]["message"]["content"].strip()
|
| 410 |
+
# raw_output = story_json_str
|
| 411 |
+
|
| 412 |
+
# # --- Clean the output ---
|
| 413 |
+
# story_json_str = re.sub(r"^ADD\s*", "", story_json_str)
|
| 414 |
+
# story_json_str = story_json_str.replace("```json", "").replace("```", "")
|
| 415 |
+
# story_json_str = story_json_str.replace("β", "\"").replace("β", "\"").replace("β", "'")
|
| 416 |
+
# story_json_str = re.sub(r",\s*([}\]])", r"\1", story_json_str) # remove trailing commas
|
| 417 |
+
# story_json_str = story_json_str.strip()
|
| 418 |
+
|
| 419 |
+
# # --- Parse the JSON safely ---
|
| 420 |
+
# parsed_story = None
|
| 421 |
+
# try:
|
| 422 |
+
# parsed_story = json.loads(story_json_str)
|
| 423 |
+
# except json.JSONDecodeError as e:
|
| 424 |
+
# logging.warning(f"JSON parse failed: {e}")
|
| 425 |
+
# try:
|
| 426 |
+
# # try to find JSON substring in case AI wrapped it with text
|
| 427 |
+
# match = re.search(r"\{.*\}", story_json_str, re.DOTALL)
|
| 428 |
+
# if match:
|
| 429 |
+
# parsed_story = json.loads(match.group(0))
|
| 430 |
+
# except Exception as e2:
|
| 431 |
+
# logging.error(f"Final parsing failed: {e2}")
|
| 432 |
+
# parsed_story = None
|
| 433 |
+
|
| 434 |
+
# logging.info("β
Storyboard generation completed")
|
| 435 |
+
# return parsed_story
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
import os
|
| 442 |
+
import asyncio
|
| 443 |
+
import httpx
|
| 444 |
+
import logging
|
| 445 |
+
import json
|
| 446 |
+
import re
|
| 447 |
+
from dotenv import load_dotenv
|
| 448 |
+
|
| 449 |
+
# --- Load environment variables ---
|
| 450 |
+
dotenv_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')
|
| 451 |
+
load_dotenv(dotenv_path)
|
| 452 |
+
|
| 453 |
+
# --- Configure logging ---
|
| 454 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
| 455 |
+
|
| 456 |
+
# --- API Constants ---
|
| 457 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 458 |
+
MODEL_NAME = "deepseek/deepseek-r1-distill-llama-70b:free"
|
| 459 |
+
OPENROUTER_URL = "https://openrouter.ai/api/v1/chat/completions"
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
async def generate_story(script: str) -> dict:
|
| 463 |
+
"""
|
| 464 |
+
Converts ad script into a structured storyboard JSON.
|
| 465 |
+
Each scene = only one action.
|
| 466 |
+
Reuses character seeds for consistency.
|
| 467 |
+
Always returns a non-null dictionary.
|
| 468 |
+
"""
|
| 469 |
+
|
| 470 |
+
prompt = f"""
|
| 471 |
+
You are a professional storyboard generator for AI video production.
|
| 472 |
+
|
| 473 |
+
Convert the given ad script into a JSON storyboard format.
|
| 474 |
+
Each scene must represent only ONE clear action or emotional beat.
|
| 475 |
+
Do not include any explanations, markdown, or text outside JSON.
|
| 476 |
+
|
| 477 |
+
### STRICT JSON FORMAT:
|
| 478 |
+
{{
|
| 479 |
+
"characters": [
|
| 480 |
+
{{"name": "Man","description":"average build, brown hair, casual outfit","seed":1}},
|
| 481 |
+
{{"name": "Librarian","description":"stern woman, cat-eye glasses, neat bun","seed":2}}
|
| 482 |
+
],
|
| 483 |
+
"scene1": {{
|
| 484 |
+
"character": "Man",
|
| 485 |
+
"scene": "Man enters the library holding a bag of potato chips",
|
| 486 |
+
"keyframes": [
|
| 487 |
+
{{
|
| 488 |
+
"seed": 1,
|
| 489 |
+
"keyframe1": "Man walking into a quiet library, holding a bag of potato chips, warm sunlight from windows, calm mood",
|
| 490 |
+
"keyframe2": "Side shot of man sitting down at a wooden table, casual expression, sunlight glows behind him"
|
| 491 |
+
}}
|
| 492 |
+
],
|
| 493 |
+
"camera": "Medium wide shot with soft natural lighting",
|
| 494 |
+
"music": "Gentle ambient tune"
|
| 495 |
+
}}
|
| 496 |
+
}}
|
| 497 |
+
|
| 498 |
+
Rules:
|
| 499 |
+
- Each scene = ONE clear action only.
|
| 500 |
+
- Use each characterβs 'seed' consistently across scenes.
|
| 501 |
+
- Each keyframe describes two cinematic angles of that action.
|
| 502 |
+
- Keep descriptions detailed but realistic.
|
| 503 |
+
- Return valid JSON only β no extra text, comments, or markdown.
|
| 504 |
+
|
| 505 |
+
Script:
|
| 506 |
+
\"\"\"{script}\"\"\"
|
| 507 |
+
"""
|
| 508 |
+
|
| 509 |
+
headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}"}
|
| 510 |
+
payload = {
|
| 511 |
+
"model": MODEL_NAME,
|
| 512 |
+
"messages": [{"role": "user", "content": prompt}],
|
| 513 |
+
"temperature": 0.7,
|
| 514 |
+
"max_tokens": 1800
|
| 515 |
+
}
|
| 516 |
+
|
| 517 |
+
async with httpx.AsyncClient(timeout=180) as client:
|
| 518 |
+
try:
|
| 519 |
+
response = await client.post(OPENROUTER_URL, json=payload, headers=headers)
|
| 520 |
+
response.raise_for_status()
|
| 521 |
+
data = response.json()
|
| 522 |
+
except Exception as e:
|
| 523 |
+
logging.error(f"API request failed: {e}")
|
| 524 |
+
return {"error": "API request failed", "details": str(e)}
|
| 525 |
+
|
| 526 |
+
story_json_str = data["choices"][0]["message"]["content"].strip()
|
| 527 |
+
|
| 528 |
+
# --- Clean the model output ---
|
| 529 |
+
story_json_str = re.sub(r"```(?:json)?", "", story_json_str)
|
| 530 |
+
story_json_str = story_json_str.replace("β", "\"").replace("β", "\"").replace("β", "'")
|
| 531 |
+
story_json_str = re.sub(r",\s*([}\]])", r"\1", story_json_str).strip()
|
| 532 |
+
|
| 533 |
+
parsed_story = None
|
| 534 |
+
try:
|
| 535 |
+
parsed_story = json.loads(story_json_str)
|
| 536 |
+
except json.JSONDecodeError as e:
|
| 537 |
+
logging.warning(f"Initial JSON parse failed: {e}")
|
| 538 |
+
match = re.search(r"\{.*\}", story_json_str, re.DOTALL)
|
| 539 |
+
if match:
|
| 540 |
+
try:
|
| 541 |
+
parsed_story = json.loads(match.group(0))
|
| 542 |
+
except Exception as e2:
|
| 543 |
+
logging.error(f"Fallback parse failed: {e2}")
|
| 544 |
+
|
| 545 |
+
# --- Final fallback: minimal structure ---
|
| 546 |
+
if not parsed_story:
|
| 547 |
+
logging.warning("Model output invalid, generating fallback JSON.")
|
| 548 |
+
parsed_story = {
|
| 549 |
+
"characters": [],
|
| 550 |
+
"scene1": {
|
| 551 |
+
"character": "Unknown",
|
| 552 |
+
"scene": "Failed to parse script properly",
|
| 553 |
+
"keyframes": [
|
| 554 |
+
{
|
| 555 |
+
"seed": 0,
|
| 556 |
+
"keyframe1": "Generic placeholder image",
|
| 557 |
+
"keyframe2": "Generic placeholder image"
|
| 558 |
+
}
|
| 559 |
+
],
|
| 560 |
+
"camera": "Static fallback frame",
|
| 561 |
+
"music": "None"
|
| 562 |
+
}
|
| 563 |
+
}
|
| 564 |
+
|
| 565 |
+
# --- Ensure consistent seeds & single-action scenes ---
|
| 566 |
+
characters = {c.get("name"): c for c in parsed_story.get("characters", [])}
|
| 567 |
+
for key, scene in parsed_story.items():
|
| 568 |
+
if not key.startswith("scene"):
|
| 569 |
+
continue
|
| 570 |
+
|
| 571 |
+
char_name = scene.get("character")
|
| 572 |
+
seed = characters.get(char_name, {}).get("seed", 0)
|
| 573 |
+
desc = characters.get(char_name, {}).get("description", "")
|
| 574 |
+
|
| 575 |
+
# Limit to one clear action
|
| 576 |
+
scene_text = scene.get("scene", "")
|
| 577 |
+
scene["scene"] = re.split(r"[,.] and |, then |;| but | while ", scene_text)[0].strip()
|
| 578 |
+
|
| 579 |
+
# Keyframe corrections
|
| 580 |
+
for kf in scene.get("keyframes", []):
|
| 581 |
+
kf["seed"] = seed
|
| 582 |
+
for i, k in enumerate(["keyframe1", "keyframe2"]):
|
| 583 |
+
if not kf.get(k):
|
| 584 |
+
angle = "wide shot" if i == 0 else "close-up"
|
| 585 |
+
kf[k] = (
|
| 586 |
+
f"{char_name} ({desc}) performing '{scene['scene']}', "
|
| 587 |
+
f"{angle}, cinematic tone, photorealistic lighting"
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
logging.info("β
Storyboard generated successfully with consistent single-action scenes.")
|
| 591 |
+
return parsed_story
|
| 592 |
+
|
| 593 |
+
|
core/video_generator.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from diffusers import AnimateDiffPipeline, MotionAdapter
|
| 6 |
+
from typing import List
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
# ---------------- MODEL CONFIG ----------------
|
| 10 |
+
MODEL_REPO = "ByteDance/AnimateDiff-Lightning"
|
| 11 |
+
MODEL_FILENAME = "animatediff_lightning_8step_comfyui.safetensors"
|
| 12 |
+
MODEL_DIR = Path("/tmp/models/animatediff_lightning")
|
| 13 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# ---------------- MODEL DOWNLOAD ----------------
|
| 16 |
+
def download_model() -> Path:
|
| 17 |
+
model_path = MODEL_DIR / MODEL_FILENAME
|
| 18 |
+
if not model_path.exists():
|
| 19 |
+
print("[VideoGen] Downloading AnimateDiff Lightning 8-step...")
|
| 20 |
+
model_path = hf_hub_download(
|
| 21 |
+
repo_id=MODEL_REPO,
|
| 22 |
+
filename=MODEL_FILENAME,
|
| 23 |
+
local_dir=str(MODEL_DIR),
|
| 24 |
+
force_download=False,
|
| 25 |
+
)
|
| 26 |
+
print(f"[VideoGen] Model downloaded to: {model_path}")
|
| 27 |
+
else:
|
| 28 |
+
print("[VideoGen] AnimateDiff model already exists.")
|
| 29 |
+
return model_path
|
| 30 |
+
|
| 31 |
+
# ---------------- PIPELINE LOAD ----------------
|
| 32 |
+
def load_pipeline() -> AnimateDiffPipeline:
|
| 33 |
+
model_path = download_model()
|
| 34 |
+
print("[VideoGen] Loading AnimateDiff pipeline...")
|
| 35 |
+
|
| 36 |
+
adapter = MotionAdapter.from_single_file(str(model_path))
|
| 37 |
+
pipe = AnimateDiffPipeline.from_pretrained(
|
| 38 |
+
"emilianJR/epiCRealism",
|
| 39 |
+
motion_adapter=adapter,
|
| 40 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
if torch.cuda.is_available():
|
| 44 |
+
pipe.to("cuda")
|
| 45 |
+
|
| 46 |
+
print("[VideoGen] AnimateDiff ready.")
|
| 47 |
+
return pipe
|
| 48 |
+
|
| 49 |
+
# ---------------- GLOBAL PIPELINE CACHE ----------------
|
| 50 |
+
pipe: AnimateDiffPipeline | None = None
|
| 51 |
+
|
| 52 |
+
# ---------------- VIDEO GENERATION ----------------
|
| 53 |
+
def generate_video(
|
| 54 |
+
keyframe_images: List[Image.Image],
|
| 55 |
+
seed: int = None,
|
| 56 |
+
num_frames: int = 16
|
| 57 |
+
) -> List[Image.Image]:
|
| 58 |
+
"""
|
| 59 |
+
Generates a short video by interpolating between input keyframe images.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
keyframe_images (List[PIL.Image]): List of PIL images representing keyframes.
|
| 63 |
+
seed (int, optional): Seed for deterministic generation.
|
| 64 |
+
num_frames (int): Total number of frames in the generated video.
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
List[PIL.Image]: Interpolated video frames.
|
| 68 |
+
"""
|
| 69 |
+
global pipe
|
| 70 |
+
if pipe is None:
|
| 71 |
+
pipe = load_pipeline()
|
| 72 |
+
|
| 73 |
+
if len(keyframe_images) < 2:
|
| 74 |
+
raise ValueError("At least 2 keyframe images are required to generate a video.")
|
| 75 |
+
|
| 76 |
+
print(f"[VideoGen] Generating video from {len(keyframe_images)} keyframes, {num_frames} frames, seed={seed}")
|
| 77 |
+
|
| 78 |
+
generator = None
|
| 79 |
+
if seed is not None:
|
| 80 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 81 |
+
generator = torch.Generator(device).manual_seed(seed)
|
| 82 |
+
|
| 83 |
+
# AnimateDiff expects init_images for interpolation between keyframes
|
| 84 |
+
video_frames = pipe(
|
| 85 |
+
init_images=keyframe_images,
|
| 86 |
+
num_frames=num_frames,
|
| 87 |
+
guidance_scale=1.0,
|
| 88 |
+
num_inference_steps=8,
|
| 89 |
+
generator=generator
|
| 90 |
+
).frames
|
| 91 |
+
|
| 92 |
+
print("[VideoGen] Video generated successfully.")
|
| 93 |
+
return video_frames
|
pipeline/_init.py
ADDED
|
File without changes
|
pipeline/pipeline.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pipeline.py
|
| 2 |
+
import asyncio
|
| 3 |
+
import logging
|
| 4 |
+
from api.server import pending_confirmations # Access the confirmation events
|
| 5 |
+
|
| 6 |
+
# Import your modules
|
| 7 |
+
import core.script_gen as script_gen
|
| 8 |
+
import core.story_script as story_script
|
| 9 |
+
# import core.image_gen as image_gen
|
| 10 |
+
# import core.video_gen as video_gen
|
| 11 |
+
# import core.music_gen as music_gen
|
| 12 |
+
# import core.assemble as assemble
|
| 13 |
+
|
| 14 |
+
logging.basicConfig(
|
| 15 |
+
level=logging.INFO,
|
| 16 |
+
format="%(asctime)s [%(levelname)s] %(message)s"
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
async def run_pipeline(task: dict):
|
| 20 |
+
task_id = task["task_id"]
|
| 21 |
+
idea = task["idea"]
|
| 22 |
+
|
| 23 |
+
logging.info(f"[Pipeline] Starting script generation for task {task_id}")
|
| 24 |
+
script = await script_gen.generate_script(idea) # Async script generation
|
| 25 |
+
|
| 26 |
+
logging.info(f"[Pipeline] Waiting for user confirmation for task {task_id}")
|
| 27 |
+
# Wait for confirmation (manual or auto)
|
| 28 |
+
if task_id in pending_confirmations:
|
| 29 |
+
await pending_confirmations[task_id].wait()
|
| 30 |
+
else:
|
| 31 |
+
logging.info(f"[Pipeline] No pending confirmation found, auto-confirming task {task_id}")
|
| 32 |
+
|
| 33 |
+
logging.info(f"[Pipeline] Generating story script for task {task_id}")
|
| 34 |
+
story = await story_script.generate_story(script)
|
| 35 |
+
final_output = story # Placeholder for final output
|
| 36 |
+
# logging.info(f"[Pipeline] Generating images for task {task_id}")
|
| 37 |
+
# images = await image_gen.generate_images(story)
|
| 38 |
+
|
| 39 |
+
# logging.info(f"[Pipeline] Generating video for task {task_id}")
|
| 40 |
+
# video = await video_gen.generate_video(images)
|
| 41 |
+
|
| 42 |
+
# logging.info(f"[Pipeline] Generating music/audio for task {task_id}")
|
| 43 |
+
# audio = await music_gen.generate_music(story)
|
| 44 |
+
|
| 45 |
+
# logging.info(f"[Pipeline] Assembling final output for task {task_id}")
|
| 46 |
+
# final_output = await assemble.create_final(video, audio)
|
| 47 |
+
|
| 48 |
+
logging.info(f"[Pipeline] Task {task_id} completed. Output: {final_output}")
|
| 49 |
+
return final_output
|
services/__init__.py
ADDED
|
File without changes
|
services/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (164 Bytes). View file
|
|
|
services/__pycache__/queue_manager.cpython-311.pyc
ADDED
|
Binary file (5.08 kB). View file
|
|
|
services/queue_manager.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # services/queue_manager.py
|
| 2 |
+
# import os
|
| 3 |
+
# import uuid
|
| 4 |
+
# import asyncio
|
| 5 |
+
# import pickle
|
| 6 |
+
# from collections import deque
|
| 7 |
+
# from concurrent.futures import ThreadPoolExecutor
|
| 8 |
+
# from typing import Callable, Any
|
| 9 |
+
|
| 10 |
+
# # ---------------- CONFIG ----------------
|
| 11 |
+
# RAM_QUEUE_LIMIT = 10
|
| 12 |
+
# DISK_QUEUE_DIR = "task_queue_disk"
|
| 13 |
+
# os.makedirs(DISK_QUEUE_DIR, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# # ---------------- INTERNAL STORAGE ----------------
|
| 16 |
+
# ram_queue = deque()
|
| 17 |
+
# disk_queue_files = deque()
|
| 18 |
+
# futures = {}
|
| 19 |
+
# executor = ThreadPoolExecutor(max_workers=2) # Can process 2 tasks concurrently
|
| 20 |
+
# processing = False
|
| 21 |
+
# lock = asyncio.Lock()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# class QueueManager:
|
| 25 |
+
# def __init__(self):
|
| 26 |
+
# self.ram_queue = ram_queue
|
| 27 |
+
# self.disk_queue_files = disk_queue_files
|
| 28 |
+
# self.futures = futures
|
| 29 |
+
# self.executor = executor
|
| 30 |
+
# self.processing = False
|
| 31 |
+
# self.lock = lock
|
| 32 |
+
|
| 33 |
+
# async def _process_queue(self):
|
| 34 |
+
# """Process tasks one at a time in strict FIFO order."""
|
| 35 |
+
# async with self.lock:
|
| 36 |
+
# if self.processing:
|
| 37 |
+
# return
|
| 38 |
+
# self.processing = True
|
| 39 |
+
|
| 40 |
+
# try:
|
| 41 |
+
# while self.ram_queue or self.disk_queue_files:
|
| 42 |
+
# if not self.ram_queue and self.disk_queue_files:
|
| 43 |
+
# # Move one task from disk to RAM
|
| 44 |
+
# file_path = self.disk_queue_files.popleft()
|
| 45 |
+
# with open(file_path, "rb") as f:
|
| 46 |
+
# task_data = pickle.load(f)
|
| 47 |
+
# os.remove(file_path)
|
| 48 |
+
# self.ram_queue.append(task_data)
|
| 49 |
+
# print(f"[Queue] Loaded task from disk to RAM.")
|
| 50 |
+
|
| 51 |
+
# if not self.ram_queue:
|
| 52 |
+
# break
|
| 53 |
+
|
| 54 |
+
# task_id, func, args, kwargs = self.ram_queue.popleft()
|
| 55 |
+
# print(f"[Queue] Processing task {task_id}...")
|
| 56 |
+
|
| 57 |
+
# loop = asyncio.get_event_loop()
|
| 58 |
+
# # Run in executor to avoid blocking event loop
|
| 59 |
+
# result = await loop.run_in_executor(self.executor, func, *args, **kwargs)
|
| 60 |
+
|
| 61 |
+
# # Set result in future
|
| 62 |
+
# fut = self.futures.get(task_id)
|
| 63 |
+
# if fut and not fut.done():
|
| 64 |
+
# fut.set_result(result)
|
| 65 |
+
# print(f"[Queue] Task {task_id} completed.")
|
| 66 |
+
|
| 67 |
+
# finally:
|
| 68 |
+
# self.processing = False
|
| 69 |
+
|
| 70 |
+
# def enqueue_task(self, func: Callable, *args, **kwargs) -> str:
|
| 71 |
+
# """
|
| 72 |
+
# Add a task to the queue.
|
| 73 |
+
# func: Callable function to execute.
|
| 74 |
+
# args, kwargs: Arguments for the function.
|
| 75 |
+
# Returns a unique task_id.
|
| 76 |
+
# """
|
| 77 |
+
# task_id = str(uuid.uuid4())
|
| 78 |
+
# loop = asyncio.get_event_loop()
|
| 79 |
+
# fut = loop.create_future()
|
| 80 |
+
# self.futures[task_id] = fut
|
| 81 |
+
|
| 82 |
+
# task_data = (task_id, func, args, kwargs)
|
| 83 |
+
|
| 84 |
+
# if len(self.ram_queue) < RAM_QUEUE_LIMIT:
|
| 85 |
+
# self.ram_queue.append(task_data)
|
| 86 |
+
# print(f"[Queue] Task {task_id} added to RAM queue.")
|
| 87 |
+
# else:
|
| 88 |
+
# file_path = os.path.join(DISK_QUEUE_DIR, f"{task_id}.pkl")
|
| 89 |
+
# with open(file_path, "wb") as f:
|
| 90 |
+
# pickle.dump(task_data, f)
|
| 91 |
+
# self.disk_queue_files.append(file_path)
|
| 92 |
+
# print(f"[Queue] Task {task_id} saved to disk.")
|
| 93 |
+
|
| 94 |
+
# # Start processing
|
| 95 |
+
# loop.create_task(self._process_queue())
|
| 96 |
+
# return task_id
|
| 97 |
+
|
| 98 |
+
# def get_future(self, task_id: str):
|
| 99 |
+
# """Get the future object for a task_id."""
|
| 100 |
+
# return self.futures.get(task_id)
|
| 101 |
+
|
| 102 |
+
# def get_queue_status(self) -> dict:
|
| 103 |
+
# """Return current queue info."""
|
| 104 |
+
# total_q = len(self.ram_queue) + len(self.disk_queue_files)
|
| 105 |
+
# return {
|
| 106 |
+
# "status": "free" if total_q == 0 else "busy",
|
| 107 |
+
# "queue_length": total_q,
|
| 108 |
+
# "ram_queue": len(self.ram_queue),
|
| 109 |
+
# "disk_queue": len(self.disk_queue_files),
|
| 110 |
+
# "processing": self.processing
|
| 111 |
+
# }
|
| 112 |
+
|
| 113 |
+
# # # Singleton instance for the pipeline.pipeline to use
|
| 114 |
+
# # queue_manager = QueueManager()
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# # best
|
| 119 |
+
# # queue.py
|
| 120 |
+
# import asyncio
|
| 121 |
+
# import uuid
|
| 122 |
+
# from typing import Dict, Any, Optional
|
| 123 |
+
# from enum import Enum
|
| 124 |
+
|
| 125 |
+
# # === Import all stage functions ===
|
| 126 |
+
# # queue_manager.py
|
| 127 |
+
# # queue_manager.py inside core/
|
| 128 |
+
# from core.script_gen import generate_script
|
| 129 |
+
# from core.story_script import generate_story
|
| 130 |
+
# # from core.image_gen import generate_images
|
| 131 |
+
# # from core.video_gen import generate_video
|
| 132 |
+
# # from core.music_gen import generate_music
|
| 133 |
+
# # from core.assemble import assemble_final_video
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# # -------------------------------------------------------------
|
| 138 |
+
# # ENUMS AND GLOBALS
|
| 139 |
+
# # -------------------------------------------------------------
|
| 140 |
+
# class TaskStatus(str, Enum):
|
| 141 |
+
# PENDING = "pending"
|
| 142 |
+
# RUNNING = "running"
|
| 143 |
+
# WAITING_CONFIRMATION = "waiting_for_confirmation"
|
| 144 |
+
# CONFIRMED = "confirmed"
|
| 145 |
+
# COMPLETED = "completed"
|
| 146 |
+
# FAILED = "failed"
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# # All active tasks are tracked here (in-memory)
|
| 150 |
+
# tasks: Dict[str, Dict[str, Any]] = {}
|
| 151 |
+
|
| 152 |
+
# # Async queue for orderly execution
|
| 153 |
+
# task_queue = asyncio.Queue()
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# # -------------------------------------------------------------
|
| 157 |
+
# # ADD NEW TASK
|
| 158 |
+
# # -------------------------------------------------------------
|
| 159 |
+
# async def add_task(idea: str) -> str:
|
| 160 |
+
# """
|
| 161 |
+
# Adds a new ad generation task to the queue and returns its task ID.
|
| 162 |
+
# """
|
| 163 |
+
# task_id = str(uuid.uuid4())
|
| 164 |
+
|
| 165 |
+
# tasks[task_id] = {
|
| 166 |
+
# "id": task_id,
|
| 167 |
+
# "idea": idea,
|
| 168 |
+
# "status": TaskStatus.PENDING,
|
| 169 |
+
# "result": None,
|
| 170 |
+
# "confirmation_required": False
|
| 171 |
+
# }
|
| 172 |
+
|
| 173 |
+
# await task_queue.put(task_id)
|
| 174 |
+
# print(f"π§© Task added to queue: {task_id}")
|
| 175 |
+
|
| 176 |
+
# return task_id
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# # -------------------------------------------------------------
|
| 180 |
+
# # MAIN WORKER LOOP
|
| 181 |
+
# # -------------------------------------------------------------
|
| 182 |
+
# async def worker():
|
| 183 |
+
# """
|
| 184 |
+
# Continuously consumes tasks from the queue one-by-one.
|
| 185 |
+
# Each task runs through all stages in sequence.
|
| 186 |
+
# """
|
| 187 |
+
# while True:
|
| 188 |
+
# task_id = await task_queue.get()
|
| 189 |
+
# task = tasks.get(task_id)
|
| 190 |
+
# if not task:
|
| 191 |
+
# task_queue.task_done()
|
| 192 |
+
# continue
|
| 193 |
+
|
| 194 |
+
# try:
|
| 195 |
+
# print(f"π Starting task: {task_id}")
|
| 196 |
+
# task["status"] = TaskStatus.RUNNING
|
| 197 |
+
|
| 198 |
+
# # === STEP 1: Script generation ===
|
| 199 |
+
# script_result = await generate_script(task["idea"])
|
| 200 |
+
# task["result"] = {"script": script_result}
|
| 201 |
+
# task["status"] = TaskStatus.WAITING_CONFIRMATION
|
| 202 |
+
# task["confirmation_required"] = True
|
| 203 |
+
|
| 204 |
+
# print(f"β Task {task_id} waiting for confirmation after script stage.")
|
| 205 |
+
|
| 206 |
+
# # Wait until user confirms externally
|
| 207 |
+
# while task["status"] == TaskStatus.WAITING_CONFIRMATION:
|
| 208 |
+
# await asyncio.sleep(1)
|
| 209 |
+
|
| 210 |
+
# # === STEP 2: Story generation ===
|
| 211 |
+
# if task["status"] == TaskStatus.CONFIRMED:
|
| 212 |
+
# print(f"π¬ Task {task_id} confirmed. Continuing pipeline.pipeline...")
|
| 213 |
+
|
| 214 |
+
# story_result = await generate_story(script_result)
|
| 215 |
+
# # images = await generate_images(story_result)
|
| 216 |
+
# # video = await generate_video(images)
|
| 217 |
+
# # music = await generate_music(story_result)
|
| 218 |
+
# # final_output = await assemble_final_video(video, music)
|
| 219 |
+
|
| 220 |
+
# task["result"].update({
|
| 221 |
+
# "story_script": story_result,
|
| 222 |
+
# # "images": images,
|
| 223 |
+
# # "video": video,
|
| 224 |
+
# # "music": music,
|
| 225 |
+
# # "final_output": final_output
|
| 226 |
+
# })
|
| 227 |
+
|
| 228 |
+
# task["status"] = TaskStatus.COMPLETED
|
| 229 |
+
# print(f"β
Task {task_id} completed successfully!")
|
| 230 |
+
|
| 231 |
+
# except Exception as e:
|
| 232 |
+
# task["status"] = TaskStatus.FAILED
|
| 233 |
+
# task["result"] = {"error": str(e)}
|
| 234 |
+
# print(f"β Task {task_id} failed with error: {e}")
|
| 235 |
+
|
| 236 |
+
# finally:
|
| 237 |
+
# task_queue.task_done()
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# # -------------------------------------------------------------
|
| 241 |
+
# # CONFIRMATION HANDLER
|
| 242 |
+
# # -------------------------------------------------------------
|
| 243 |
+
# async def confirm_task(task_id: str) -> Dict[str, Any]:
|
| 244 |
+
# """
|
| 245 |
+
# Confirms a paused task and resumes the rest of the pipeline.pipeline.
|
| 246 |
+
# """
|
| 247 |
+
# task = tasks.get(task_id)
|
| 248 |
+
# if not task:
|
| 249 |
+
# return {"error": "Invalid task ID."}
|
| 250 |
+
|
| 251 |
+
# if task["status"] != TaskStatus.WAITING_CONFIRMATION:
|
| 252 |
+
# return {"error": "Task is not waiting for confirmation."}
|
| 253 |
+
|
| 254 |
+
# task["status"] = TaskStatus.CONFIRMED
|
| 255 |
+
# task["confirmation_required"] = False
|
| 256 |
+
# print(f"π Task {task_id} confirmed. Resuming pipeline.pipeline...")
|
| 257 |
+
|
| 258 |
+
# return {"message": f"Task {task_id} confirmed and resumed."}
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# # -------------------------------------------------------------
|
| 262 |
+
# # STATUS CHECK
|
| 263 |
+
# # -------------------------------------------------------------
|
| 264 |
+
# def get_task_status(task_id: str) -> Optional[Dict[str, Any]]:
|
| 265 |
+
# """
|
| 266 |
+
# Returns the full details of a task including stage results.
|
| 267 |
+
# """
|
| 268 |
+
# return tasks.get(task_id)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
# # -------------------------------------------------------------
|
| 272 |
+
# # START WORKER ON APP STARTUP
|
| 273 |
+
# # -------------------------------------------------------------
|
| 274 |
+
# def start_worker():
|
| 275 |
+
# """
|
| 276 |
+
# Starts the asynchronous background worker loop.
|
| 277 |
+
# Must be called once when FastAPI app starts.
|
| 278 |
+
# """
|
| 279 |
+
# loop = asyncio.get_event_loop()
|
| 280 |
+
# loop.create_task(worker())
|
| 281 |
+
# print("βοΈ Worker loop started.")
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
import asyncio
|
| 286 |
+
import uuid
|
| 287 |
+
from typing import Dict, Any, Optional
|
| 288 |
+
from enum import Enum
|
| 289 |
+
from core.script_gen import generate_script
|
| 290 |
+
from core.story_script import generate_story
|
| 291 |
+
# from core.image_gen import generate_images
|
| 292 |
+
# from core.video_gen import generate_video
|
| 293 |
+
# from core.music_gen import generate_music
|
| 294 |
+
# from core.assemble import assemble_final_video
|
| 295 |
+
|
| 296 |
+
# -------------------------------------------------------------
|
| 297 |
+
# ENUMS AND GLOBALS
|
| 298 |
+
# -------------------------------------------------------------
|
| 299 |
+
class TaskStatus(str, Enum):
|
| 300 |
+
PENDING = "pending"
|
| 301 |
+
RUNNING = "running"
|
| 302 |
+
WAITING_CONFIRMATION = "waiting_for_confirmation"
|
| 303 |
+
CONFIRMED = "confirmed"
|
| 304 |
+
COMPLETED = "completed"
|
| 305 |
+
FAILED = "failed"
|
| 306 |
+
|
| 307 |
+
tasks: Dict[str, Dict[str, Any]] = {}
|
| 308 |
+
task_queue = asyncio.Queue()
|
| 309 |
+
|
| 310 |
+
# -------------------------------------------------------------
|
| 311 |
+
# ADD NEW TASK
|
| 312 |
+
# -------------------------------------------------------------
|
| 313 |
+
async def add_task(idea: str) -> str:
|
| 314 |
+
task_id = str(uuid.uuid4())
|
| 315 |
+
tasks[task_id] = {
|
| 316 |
+
"id": task_id,
|
| 317 |
+
"idea": idea,
|
| 318 |
+
"status": TaskStatus.PENDING,
|
| 319 |
+
"result": None,
|
| 320 |
+
"confirmation_required": False
|
| 321 |
+
}
|
| 322 |
+
await task_queue.put(task_id)
|
| 323 |
+
print(f"π§© Task added to queue: {task_id}")
|
| 324 |
+
return task_id
|
| 325 |
+
|
| 326 |
+
# -------------------------------------------------------------
|
| 327 |
+
# WAIT FOR SCRIPT FOR CONFIRMATION
|
| 328 |
+
# -------------------------------------------------------------
|
| 329 |
+
async def wait_for_script(task_id: str, script_results: dict):
|
| 330 |
+
task = tasks.get(task_id)
|
| 331 |
+
if not task:
|
| 332 |
+
return
|
| 333 |
+
|
| 334 |
+
task["status"] = TaskStatus.RUNNING
|
| 335 |
+
# Generate script
|
| 336 |
+
script_result = await generate_script(task["idea"])
|
| 337 |
+
task["result"] = {"script": script_result}
|
| 338 |
+
task["status"] = TaskStatus.WAITING_CONFIRMATION
|
| 339 |
+
task["confirmation_required"] = True
|
| 340 |
+
|
| 341 |
+
# Keep script accessible for server endpoint
|
| 342 |
+
script_results[task_id] = script_result
|
| 343 |
+
print(f"β Task {task_id} waiting for confirmation. Script ready.")
|
| 344 |
+
|
| 345 |
+
# -------------------------------------------------------------
|
| 346 |
+
# GENERATE STORY AFTER CONFIRMATION
|
| 347 |
+
# -------------------------------------------------------------
|
| 348 |
+
async def generate_story_after_confirm(script: str):
|
| 349 |
+
story_result = await generate_story(script)
|
| 350 |
+
return story_result
|
| 351 |
+
|
| 352 |
+
# -------------------------------------------------------------
|
| 353 |
+
# WORKER LOOP (Optional: future stages)
|
| 354 |
+
# -------------------------------------------------------------
|
| 355 |
+
async def worker():
|
| 356 |
+
while True:
|
| 357 |
+
task_id = await task_queue.get()
|
| 358 |
+
task = tasks.get(task_id)
|
| 359 |
+
if not task:
|
| 360 |
+
task_queue.task_done()
|
| 361 |
+
continue
|
| 362 |
+
try:
|
| 363 |
+
# Already handled script in wait_for_script
|
| 364 |
+
# Future stages like images/video/music can go here
|
| 365 |
+
pass
|
| 366 |
+
except Exception as e:
|
| 367 |
+
task["status"] = TaskStatus.FAILED
|
| 368 |
+
task["result"] = {"error": str(e)}
|
| 369 |
+
print(f"β Task {task_id} failed with error: {e}")
|
| 370 |
+
finally:
|
| 371 |
+
task_queue.task_done()
|
| 372 |
+
|
| 373 |
+
# -------------------------------------------------------------
|
| 374 |
+
# CONFIRM TASK
|
| 375 |
+
# -------------------------------------------------------------
|
| 376 |
+
async def confirm_task(task_id: str):
|
| 377 |
+
task = tasks.get(task_id)
|
| 378 |
+
if not task:
|
| 379 |
+
return {"error": "Invalid task ID."}
|
| 380 |
+
|
| 381 |
+
if task["status"] != TaskStatus.WAITING_CONFIRMATION:
|
| 382 |
+
return {"error": "Task is not waiting for confirmation."}
|
| 383 |
+
|
| 384 |
+
task["status"] = TaskStatus.CONFIRMED
|
| 385 |
+
task["confirmation_required"] = False
|
| 386 |
+
print(f"π Task {task_id} confirmed. Ready for story generation...")
|
| 387 |
+
return {"message": f"Task {task_id} confirmed."}
|
| 388 |
+
|
| 389 |
+
# -------------------------------------------------------------
|
| 390 |
+
# GET TASK STATUS
|
| 391 |
+
# -------------------------------------------------------------
|
| 392 |
+
def get_task_status(task_id: str) -> Optional[Dict[str, Any]]:
|
| 393 |
+
return tasks.get(task_id)
|
| 394 |
+
|
| 395 |
+
# -------------------------------------------------------------
|
| 396 |
+
# START WORKER
|
| 397 |
+
# -------------------------------------------------------------
|
| 398 |
+
def start_worker():
|
| 399 |
+
loop = asyncio.get_event_loop()
|
| 400 |
+
loop.create_task(worker())
|
| 401 |
+
print("βοΈ Worker loop started.")
|