karthi311 commited on
Commit
0c5cf49
1 Parent(s): c4f4cf8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -63
app.py CHANGED
@@ -1,64 +1,59 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the summarization model
5
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
6
+
7
+ # Use the grammar correction model via pipeline
8
+ grammar_correction_pipe = pipeline("text2text-generation", model="pszemraj/flan-t5-large-grammar-synthesis")
9
+
10
+ # Function for grammar correction
11
+ def correct_grammar(user_input):
12
+ if user_input.strip():
13
+ corrected_text = grammar_correction_pipe(user_input)[0]['generated_text']
14
+ return corrected_text
15
+ else:
16
+ return "Please enter some text for grammar correction."
17
+
18
+ # Function for text summarization
19
+ def summarize_text(user_input):
20
+ if user_input.strip():
21
+ summary = summarizer(user_input, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
22
+ return summary
23
+ else:
24
+ return "Please enter some text to summarize."
25
+
26
+ # Function to combine grammar correction and summarization
27
+ def correct_and_summarize(user_input):
28
+ corrected_text = correct_grammar(user_input) # First correct the grammar
29
+ summary = summarize_text(corrected_text) # Then summarize the corrected text
30
+ return summary
31
+
32
+ # Gradio UI setup
33
+ with gr.Blocks() as demo:
34
+ gr.Markdown("## Text Summarization and Grammar Correction Assistant")
35
+
36
+ # Dropdown to select task
37
+ task = gr.Dropdown(choices=["Summarize Text", "Correct Grammar"], label="Choose a task")
38
+
39
+ # Input component for text
40
+ user_input = gr.Textbox(label="Enter your text here:")
41
+
42
+ # Output box for displaying the result
43
+ output = gr.Textbox(label="Output", interactive=False)
44
+
45
+ # Submit button
46
+ submit_btn = gr.Button("Submit")
47
+
48
+ # Function to process the input based on selected task
49
+ def process_input(task, user_input):
50
+ if task == "Summarize Text":
51
+ return correct_and_summarize(user_input) # Correct grammar, then summarize
52
+ elif task == "Correct Grammar":
53
+ return correct_grammar(user_input) # Only correct grammar
54
+
55
+ # Link the submit button to process the input
56
+ submit_btn.click(process_input, inputs=[task, user_input], outputs=output)
57
+
58
+ # Launch the Gradio interface
59
+ demo.launch()