Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Test for panoptic_deeplab.py.""" | |
import numpy as np | |
import tensorflow as tf | |
from deeplab2.model.post_processor import panoptic_deeplab | |
class PostProcessingTest(tf.test.TestCase): | |
def test_py_func_merge_semantic_and_instance_maps_can_run(self): | |
batch = 1 | |
height = 5 | |
width = 5 | |
semantic_prediction = tf.random.uniform((batch, height, width), | |
minval=0, | |
maxval=20, | |
dtype=tf.int32) | |
instance_maps = tf.random.uniform((batch, height, width), | |
minval=0, | |
maxval=3, | |
dtype=tf.int32) | |
thing_class_ids = tf.convert_to_tensor([1, 2, 3]) | |
label_divisor = 256 | |
stuff_area_limit = 3 | |
void_label = 255 | |
panoptic_prediction = panoptic_deeplab._merge_semantic_and_instance_maps( | |
semantic_prediction, instance_maps, thing_class_ids, label_divisor, | |
stuff_area_limit, void_label) | |
self.assertListEqual(semantic_prediction.get_shape().as_list(), | |
panoptic_prediction.get_shape().as_list()) | |
def test_merge_semantic_and_instance_maps_with_a_simple_example(self): | |
semantic_prediction = tf.convert_to_tensor( | |
[[[0, 0, 0, 0], | |
[0, 1, 1, 0], | |
[0, 2, 2, 0], | |
[2, 2, 3, 3]]], dtype=tf.int32) | |
instance_maps = tf.convert_to_tensor( | |
[[[0, 0, 0, 0], | |
[0, 0, 0, 0], | |
[0, 1, 1, 0], | |
[2, 2, 3, 3]]], dtype=tf.int32) | |
thing_class_ids = tf.convert_to_tensor([2, 3]) | |
label_divisor = 256 | |
stuff_area_limit = 3 | |
void_label = 255 | |
# The expected_panoptic_prediction is computed as follows. | |
# For `thing` segmentation, instance 1, 2, and 3 are kept, but instance 3 | |
# will have a new instance ID 1, since it is the first instance in its | |
# own semantic label. | |
# For `stuff` segmentation, class-0 region is kept, while class-1 region | |
# is re-labeled as `void_label * label_divisor` since its area is smaller | |
# than stuff_area_limit. | |
expected_panoptic_prediction = tf.convert_to_tensor( | |
[[[0, 0, 0, 0], | |
[0, void_label * label_divisor, void_label * label_divisor, 0], | |
[0, 2 * label_divisor + 1, 2 * label_divisor + 1, 0], | |
[2 * label_divisor + 2, 2 * label_divisor + 2, 3 * label_divisor + 1, | |
3 * label_divisor + 1]]], dtype=tf.int32) | |
panoptic_prediction = panoptic_deeplab._merge_semantic_and_instance_maps( | |
semantic_prediction, instance_maps, thing_class_ids, label_divisor, | |
stuff_area_limit, void_label) | |
np.testing.assert_equal(expected_panoptic_prediction.numpy(), | |
panoptic_prediction.numpy()) | |
def test_gets_panoptic_predictions_with_score(self): | |
batch = 1 | |
height = 5 | |
width = 5 | |
classes = 3 | |
semantic_logits = tf.random.uniform((batch, 1, 1, classes)) | |
semantic_logits = tf.tile(semantic_logits, (1, height, width, 1)) | |
center_heatmap = tf.convert_to_tensor([ | |
[1.0, 0.0, 0.0, 0.0, 0.0], | |
[0.8, 0.0, 0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0, 0.0, 0.0], | |
[0.0, 0.0, 0.0, 0.1, 0.7], | |
[0.0, 0.0, 0.0, 0.0, 0.2], | |
], | |
dtype=tf.float32) | |
center_heatmap = tf.expand_dims(center_heatmap, 0) | |
center_heatmap = tf.expand_dims(center_heatmap, 3) | |
center_offsets = tf.zeros((batch, height, width, 2)) | |
center_threshold = 0.0 | |
thing_class_ids = tf.range(classes) # No "stuff" classes. | |
label_divisor = 256 | |
stuff_area_limit = 16 | |
void_label = classes | |
nms_kernel_size = 3 | |
keep_k_centers = 2 | |
merge_semantic_and_instance_with_tf_op = True | |
result = panoptic_deeplab._get_panoptic_predictions( | |
semantic_logits, center_heatmap, center_offsets, center_threshold, | |
thing_class_ids, label_divisor, stuff_area_limit, void_label, | |
nms_kernel_size, keep_k_centers, merge_semantic_and_instance_with_tf_op) | |
instance_maps = result[2].numpy() | |
instance_scores = result[4].numpy() | |
self.assertSequenceEqual(instance_maps.shape, (batch, height, width)) | |
expected_instances = [[ | |
[1, 1, 1, 1, 2], | |
[1, 1, 1, 2, 2], | |
[1, 1, 2, 2, 2], | |
[1, 2, 2, 2, 2], | |
[1, 2, 2, 2, 2], | |
]] | |
np.testing.assert_array_equal(instance_maps, expected_instances) | |
self.assertSequenceEqual(instance_scores.shape, (batch, height, width)) | |
expected_instance_scores = [[ | |
[1.0, 1.0, 1.0, 1.0, 0.7], | |
[1.0, 1.0, 1.0, 0.7, 0.7], | |
[1.0, 1.0, 0.7, 0.7, 0.7], | |
[1.0, 0.7, 0.7, 0.7, 0.7], | |
[1.0, 0.7, 0.7, 0.7, 0.7], | |
]] | |
np.testing.assert_array_almost_equal(instance_scores, | |
expected_instance_scores) | |
if __name__ == '__main__': | |
tf.test.main() | |