Spaces:
Sleeping
Sleeping
kabancov_et
commited on
Commit
·
eea39e9
1
Parent(s):
5383c97
� Optimize color analysis performance: add caching, smart image resizing, and faster KMeans
Browse files- clothing_detector.py +16 -0
- process.py +83 -12
clothing_detector.py
CHANGED
|
@@ -839,6 +839,22 @@ class ClothingDetector:
|
|
| 839 |
# Load original image directly from bytes
|
| 840 |
original_image = Image.open(BytesIO(original_image_bytes))
|
| 841 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 842 |
# Create mask for selected clothing or all clothing
|
| 843 |
if selected_clothing:
|
| 844 |
# Find class ID for selected clothing
|
|
|
|
| 839 |
# Load original image directly from bytes
|
| 840 |
original_image = Image.open(BytesIO(original_image_bytes))
|
| 841 |
|
| 842 |
+
# Optimize image size for faster color analysis while maintaining quality
|
| 843 |
+
# Large images can slow down color analysis significantly
|
| 844 |
+
if original_image.width > 800 or original_image.height > 800:
|
| 845 |
+
# Calculate optimal size (balance between quality and speed)
|
| 846 |
+
max_dim = max(original_image.width, original_image.height)
|
| 847 |
+
if max_dim > 2000:
|
| 848 |
+
target_size = (800, 800) # Very large images
|
| 849 |
+
elif max_dim > 1200:
|
| 850 |
+
target_size = (1000, 1000) # Large images
|
| 851 |
+
else:
|
| 852 |
+
target_size = (1200, 1200) # Medium-large images
|
| 853 |
+
|
| 854 |
+
# Resize while maintaining aspect ratio
|
| 855 |
+
original_image.thumbnail(target_size, Image.LANCZOS)
|
| 856 |
+
logger.info(f"🔄 Optimized image size from {original_image.width}x{original_image.height} to {target_size[0]}x{target_size[1]} for faster processing")
|
| 857 |
+
|
| 858 |
# Create mask for selected clothing or all clothing
|
| 859 |
if selected_clothing:
|
| 860 |
# Find class ID for selected clothing
|
process.py
CHANGED
|
@@ -2,6 +2,8 @@ from PIL import Image
|
|
| 2 |
from io import BytesIO
|
| 3 |
from sklearn.cluster import KMeans
|
| 4 |
import base64
|
|
|
|
|
|
|
| 5 |
|
| 6 |
import os
|
| 7 |
import uuid
|
|
@@ -11,6 +13,30 @@ import numpy as np
|
|
| 11 |
from rembg import remove
|
| 12 |
REMBG_AVAILABLE = True
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def get_dominant_color(processed_bytes, k=3):
|
| 16 |
# Step 1: load transparent image
|
|
@@ -32,8 +58,18 @@ def get_dominant_color(processed_bytes, k=3):
|
|
| 32 |
|
| 33 |
|
| 34 |
def get_dominant_color_from_base64(base64_image, k=3):
|
| 35 |
-
"""Compute dominant color from base64-encoded clothing-only image."""
|
| 36 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# Step 1: Decode base64 to bytes
|
| 38 |
if base64_image.startswith('data:image'):
|
| 39 |
# Remove data URL prefix
|
|
@@ -45,9 +81,26 @@ def get_dominant_color_from_base64(base64_image, k=3):
|
|
| 45 |
|
| 46 |
# Step 2: Load image and convert to RGBA
|
| 47 |
image = Image.open(BytesIO(image_bytes)).convert("RGBA")
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
# Step
|
| 51 |
np_image = np.array(image)
|
| 52 |
rgb_pixels = np_image[...,:3] # Ignore alpha channel
|
| 53 |
alpha = np_image[..., 3]
|
|
@@ -55,17 +108,35 @@ def get_dominant_color_from_base64(base64_image, k=3):
|
|
| 55 |
|
| 56 |
# Check if we have any visible pixels
|
| 57 |
if len(rgb_pixels) == 0:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
except Exception as e:
|
| 68 |
-
print(f"Error in get_dominant_color_from_base64: {e}")
|
| 69 |
return "rgb(0, 0, 0)" # Fallback to black on error
|
| 70 |
|
| 71 |
|
|
|
|
| 2 |
from io import BytesIO
|
| 3 |
from sklearn.cluster import KMeans
|
| 4 |
import base64
|
| 5 |
+
import hashlib
|
| 6 |
+
import time
|
| 7 |
|
| 8 |
import os
|
| 9 |
import uuid
|
|
|
|
| 13 |
from rembg import remove
|
| 14 |
REMBG_AVAILABLE = True
|
| 15 |
|
| 16 |
+
# Cache for dominant colors (image_hash -> color_result)
|
| 17 |
+
_color_cache = {}
|
| 18 |
+
_cache_ttl = 3600 # 1 hour TTL
|
| 19 |
+
|
| 20 |
+
def _get_image_hash_from_base64(base64_image):
|
| 21 |
+
"""Create hash from base64 image for caching."""
|
| 22 |
+
if base64_image.startswith('data:image'):
|
| 23 |
+
base64_data = base64_image.split(',')[1]
|
| 24 |
+
else:
|
| 25 |
+
base64_data = base64_image
|
| 26 |
+
return hashlib.md5(base64_data.encode()).hexdigest()
|
| 27 |
+
|
| 28 |
+
def _cleanup_color_cache():
|
| 29 |
+
"""Remove expired cache entries."""
|
| 30 |
+
global _color_cache
|
| 31 |
+
current_time = time.time()
|
| 32 |
+
expired_keys = [
|
| 33 |
+
key for key, (_, timestamp) in _color_cache.items()
|
| 34 |
+
if current_time - timestamp > _cache_ttl
|
| 35 |
+
]
|
| 36 |
+
for key in expired_keys:
|
| 37 |
+
del _color_cache[key]
|
| 38 |
+
if expired_keys:
|
| 39 |
+
print(f"Cleaned up {len(expired_keys)} expired color cache entries")
|
| 40 |
|
| 41 |
def get_dominant_color(processed_bytes, k=3):
|
| 42 |
# Step 1: load transparent image
|
|
|
|
| 58 |
|
| 59 |
|
| 60 |
def get_dominant_color_from_base64(base64_image, k=3):
|
| 61 |
+
"""Compute dominant color from base64-encoded clothing-only image with caching."""
|
| 62 |
try:
|
| 63 |
+
# Check cache first
|
| 64 |
+
image_hash = _get_image_hash_from_base64(base64_image)
|
| 65 |
+
if image_hash in _color_cache:
|
| 66 |
+
color_result, timestamp = _color_cache[image_hash]
|
| 67 |
+
if time.time() - timestamp < _cache_ttl:
|
| 68 |
+
print(f"🎨 Using cached color result for hash: {image_hash[:8]}...")
|
| 69 |
+
return color_result
|
| 70 |
+
|
| 71 |
+
print(f"🎨 Computing dominant color for new image (hash: {image_hash[:8]}...)")
|
| 72 |
+
|
| 73 |
# Step 1: Decode base64 to bytes
|
| 74 |
if base64_image.startswith('data:image'):
|
| 75 |
# Remove data URL prefix
|
|
|
|
| 81 |
|
| 82 |
# Step 2: Load image and convert to RGBA
|
| 83 |
image = Image.open(BytesIO(image_bytes)).convert("RGBA")
|
| 84 |
+
|
| 85 |
+
# Step 3: Optimize size for faster processing
|
| 86 |
+
# Use smaller size for very large images, but keep reasonable quality
|
| 87 |
+
if image.width > 200 or image.height > 200:
|
| 88 |
+
# Calculate optimal size (balance between speed and quality)
|
| 89 |
+
max_dim = max(image.width, image.height)
|
| 90 |
+
if max_dim > 1000:
|
| 91 |
+
target_size = (150, 150) # Very large images
|
| 92 |
+
elif max_dim > 500:
|
| 93 |
+
target_size = (200, 200) # Large images
|
| 94 |
+
else:
|
| 95 |
+
target_size = (100, 100) # Medium images
|
| 96 |
+
|
| 97 |
+
image = image.resize(target_size, Image.LANCZOS)
|
| 98 |
+
print(f"🔄 Resized image from {image.width}x{image.height} to {target_size[0]}x{target_size[1]} for faster processing")
|
| 99 |
+
else:
|
| 100 |
+
# Small images - resize to standard size for consistency
|
| 101 |
+
image = image.resize((100, 100), Image.LANCZOS)
|
| 102 |
|
| 103 |
+
# Step 4: Filter only visible (non-transparent) pixels
|
| 104 |
np_image = np.array(image)
|
| 105 |
rgb_pixels = np_image[...,:3] # Ignore alpha channel
|
| 106 |
alpha = np_image[..., 3]
|
|
|
|
| 108 |
|
| 109 |
# Check if we have any visible pixels
|
| 110 |
if len(rgb_pixels) == 0:
|
| 111 |
+
result = "rgb(0, 0, 0)" # Fallback to black if no visible pixels
|
| 112 |
+
else:
|
| 113 |
+
# Step 5: Optimized KMeans clustering
|
| 114 |
+
# Use fewer clusters for faster processing on smaller datasets
|
| 115 |
+
actual_k = min(k, len(rgb_pixels) // 10) # Ensure we have enough pixels per cluster
|
| 116 |
+
if actual_k < 1:
|
| 117 |
+
actual_k = 1
|
| 118 |
+
|
| 119 |
+
# Use faster KMeans settings
|
| 120 |
+
kmeans = KMeans(
|
| 121 |
+
n_clusters=actual_k,
|
| 122 |
+
n_init=1, # Single initialization for speed
|
| 123 |
+
max_iter=100, # Limit iterations
|
| 124 |
+
random_state=42 # Deterministic results
|
| 125 |
+
)
|
| 126 |
+
kmeans.fit(rgb_pixels)
|
| 127 |
+
dominant_color = kmeans.cluster_centers_[0]
|
| 128 |
+
r, g, b = map(int, dominant_color)
|
| 129 |
+
result = f"rgb({r}, {g}, {b})"
|
| 130 |
+
|
| 131 |
+
# Cache the result
|
| 132 |
+
_color_cache[image_hash] = (result, time.time())
|
| 133 |
+
_cleanup_color_cache() # Clean up expired entries
|
| 134 |
+
|
| 135 |
+
print(f"✅ Color analysis completed: {result}")
|
| 136 |
+
return result
|
| 137 |
|
| 138 |
except Exception as e:
|
| 139 |
+
print(f"❌ Error in get_dominant_color_from_base64: {e}")
|
| 140 |
return "rgb(0, 0, 0)" # Fallback to black on error
|
| 141 |
|
| 142 |
|