Spaces:
Sleeping
Sleeping
kabancov_et
commited on
Commit
·
cafc0bb
1
Parent(s):
dc7c66f
Prepare for HF deployment: clean structure, HF optimizations, remove demo files
Browse files- .gitignore +35 -36
- Dockerfile +33 -4
- README.md +76 -1
- __init__.py +30 -0
- app.py +0 -168
- config.py +243 -0
- env.example +59 -0
- model_manager.py +75 -0
- rate_limiter.py +78 -0
- request_queue.py +71 -0
- requirements.txt +21 -5
- start.py +82 -0
- user_manager.py +25 -0
.gitignore
CHANGED
|
@@ -1,10 +1,4 @@
|
|
| 1 |
-
#
|
| 2 |
-
.venv/
|
| 3 |
-
venv/
|
| 4 |
-
env/
|
| 5 |
-
ENV/
|
| 6 |
-
|
| 7 |
-
# Python cache
|
| 8 |
__pycache__/
|
| 9 |
*.py[cod]
|
| 10 |
*$py.class
|
|
@@ -27,8 +21,14 @@ wheels/
|
|
| 27 |
*.egg
|
| 28 |
MANIFEST
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# IDE
|
| 34 |
.vscode/
|
|
@@ -50,36 +50,35 @@ Thumbs.db
|
|
| 50 |
*.log
|
| 51 |
logs/
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
.
|
| 57 |
-
.env.test.local
|
| 58 |
-
.env.production.local
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
*.temp
|
| 63 |
temp/
|
| 64 |
tmp/
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
*.
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
.
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
.coverage.*
|
| 80 |
-
.cache
|
| 81 |
-
nosetests.xml
|
| 82 |
-
coverage.xml
|
| 83 |
-
*.cover
|
| 84 |
-
.hypothesis/
|
| 85 |
-
.pytest_cache/
|
|
|
|
| 1 |
+
# Python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
__pycache__/
|
| 3 |
*.py[cod]
|
| 4 |
*$py.class
|
|
|
|
| 21 |
*.egg
|
| 22 |
MANIFEST
|
| 23 |
|
| 24 |
+
# Virtual environments
|
| 25 |
+
.env
|
| 26 |
+
.venv
|
| 27 |
+
env/
|
| 28 |
+
venv/
|
| 29 |
+
ENV/
|
| 30 |
+
env.bak/
|
| 31 |
+
venv.bak/
|
| 32 |
|
| 33 |
# IDE
|
| 34 |
.vscode/
|
|
|
|
| 50 |
*.log
|
| 51 |
logs/
|
| 52 |
|
| 53 |
+
# Cache
|
| 54 |
+
cache/
|
| 55 |
+
*.cache
|
| 56 |
+
.hf_cache/
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Results and temporary files
|
| 59 |
+
results/
|
|
|
|
| 60 |
temp/
|
| 61 |
tmp/
|
| 62 |
+
*.tmp
|
| 63 |
|
| 64 |
+
# Test files
|
| 65 |
+
test_*.py
|
| 66 |
+
*_test.py
|
| 67 |
+
test_image.jpg
|
| 68 |
+
|
| 69 |
+
# Documentation (keep only main README)
|
| 70 |
+
README_RU.md
|
| 71 |
+
demo.html
|
| 72 |
+
|
| 73 |
+
# Environment files (will be set in HF)
|
| 74 |
+
.env
|
| 75 |
+
.env.local
|
| 76 |
+
.env.production
|
| 77 |
|
| 78 |
+
# Docker
|
| 79 |
+
.dockerignore
|
| 80 |
|
| 81 |
+
# HF specific
|
| 82 |
+
.hf_cache/
|
| 83 |
+
transformers_cache/
|
| 84 |
+
datasets_cache/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dockerfile
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
# you will also find guides on how best to write your Dockerfile
|
| 3 |
|
| 4 |
-
FROM python:3.9
|
| 5 |
|
| 6 |
-
# Install
|
| 7 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 8 |
libjpeg62-turbo-dev \
|
| 9 |
libpng16-16 \
|
| 10 |
libtiff6 \
|
| 11 |
libopenblas-dev \
|
| 12 |
gfortran \
|
|
|
|
| 13 |
&& rm -rf /var/lib/apt/lists/*
|
| 14 |
|
| 15 |
# The two following lines are requirements for the Dev Mode to be functional
|
|
@@ -17,8 +18,36 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
| 17 |
RUN useradd -m -u 1000 user
|
| 18 |
WORKDIR /app
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
|
|
|
| 23 |
COPY --chown=user . /app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
# you will also find guides on how best to write your Dockerfile
|
| 3 |
|
| 4 |
+
FROM python:3.9-slim
|
| 5 |
|
| 6 |
+
# Install system dependencies
|
| 7 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 8 |
libjpeg62-turbo-dev \
|
| 9 |
libpng16-16 \
|
| 10 |
libtiff6 \
|
| 11 |
libopenblas-dev \
|
| 12 |
gfortran \
|
| 13 |
+
curl \
|
| 14 |
&& rm -rf /var/lib/apt/lists/*
|
| 15 |
|
| 16 |
# The two following lines are requirements for the Dev Mode to be functional
|
|
|
|
| 18 |
RUN useradd -m -u 1000 user
|
| 19 |
WORKDIR /app
|
| 20 |
|
| 21 |
+
# Copy requirements first for better caching
|
| 22 |
+
COPY --chown=user requirements.txt requirements.txt
|
| 23 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 24 |
+
pip install --no-cache-dir -r requirements.txt
|
| 25 |
|
| 26 |
+
# Copy application code
|
| 27 |
COPY --chown=user . /app
|
| 28 |
+
|
| 29 |
+
# Create necessary directories
|
| 30 |
+
RUN mkdir -p /app/logs /app/cache && chown -R user:user /app
|
| 31 |
+
|
| 32 |
+
# Switch to user
|
| 33 |
+
USER user
|
| 34 |
+
|
| 35 |
+
# Health check
|
| 36 |
+
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
| 37 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 38 |
+
|
| 39 |
+
# Expose port
|
| 40 |
+
EXPOSE 7860
|
| 41 |
+
|
| 42 |
+
# Default command (can be overridden)
|
| 43 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
| 44 |
+
|
| 45 |
+
# Alternative commands for different deployment scenarios:
|
| 46 |
+
# For production with multiple workers:
|
| 47 |
+
# CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "4"]
|
| 48 |
+
#
|
| 49 |
+
# For development with auto-reload:
|
| 50 |
+
# CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--reload"]
|
| 51 |
+
#
|
| 52 |
+
# For Hugging Face Spaces (single worker recommended):
|
| 53 |
+
# CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -9,4 +9,79 @@ license: mit
|
|
| 9 |
short_description: Clothing segmentation and background removal
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
short_description: Clothing segmentation and background removal
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# Loomi Clothing Detection API 🚀
|
| 13 |
+
|
| 14 |
+
AI-powered clothing analysis and segmentation API, optimized for Hugging Face Spaces.
|
| 15 |
+
|
| 16 |
+
## ✨ Features
|
| 17 |
+
|
| 18 |
+
- **🧠 AI-Powered**: Uses Segformer model for clothing detection
|
| 19 |
+
- **🖼️ Image Processing**: Background removal and dominant color detection
|
| 20 |
+
- **⚡ Async**: Non-blocking model loading and request processing
|
| 21 |
+
- **🚦 Rate Limiting**: Per-user request limits and concurrent control
|
| 22 |
+
- **👥 Multi-User**: Supports multiple users with isolation
|
| 23 |
+
- **🔧 HF Optimized**: Built specifically for Hugging Face Spaces
|
| 24 |
+
|
| 25 |
+
## 🚀 Quick Start
|
| 26 |
+
|
| 27 |
+
### API Endpoints
|
| 28 |
+
|
| 29 |
+
- `GET /` - API overview
|
| 30 |
+
- `GET /health` - System health and status
|
| 31 |
+
- `GET /user/stats` - User usage statistics
|
| 32 |
+
- `POST /clothing` - Detect clothing types and coordinates
|
| 33 |
+
- `POST /analyze` - Full analysis with color detection
|
| 34 |
+
- `POST /analyze/download` - Download processed images
|
| 35 |
+
|
| 36 |
+
### Usage Example
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
import requests
|
| 40 |
+
|
| 41 |
+
# Upload image for clothing detection
|
| 42 |
+
with open('image.jpg', 'rb') as f:
|
| 43 |
+
response = requests.post(
|
| 44 |
+
'https://your-hf-space.hf.space/clothing',
|
| 45 |
+
files={'file': f}
|
| 46 |
+
)
|
| 47 |
+
result = response.json()
|
| 48 |
+
print(result)
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## 🏗️ Architecture
|
| 52 |
+
|
| 53 |
+
- **FastAPI**: Modern, fast web framework
|
| 54 |
+
- **Async Processing**: Non-blocking operations
|
| 55 |
+
- **Rate Limiting**: User-based request control
|
| 56 |
+
- **Model Management**: Efficient ML model loading
|
| 57 |
+
- **Queue System**: Background task processing
|
| 58 |
+
|
| 59 |
+
## 🔧 Configuration
|
| 60 |
+
|
| 61 |
+
The API automatically detects Hugging Face Spaces and applies optimizations:
|
| 62 |
+
|
| 63 |
+
- Single worker process
|
| 64 |
+
- Conservative rate limits (15 req/min, 5 concurrent)
|
| 65 |
+
- Optimized cache sizes
|
| 66 |
+
- HF-specific environment variables
|
| 67 |
+
|
| 68 |
+
## 📱 Integration
|
| 69 |
+
|
| 70 |
+
Perfect for:
|
| 71 |
+
- Mobile apps (React Native, Flutter)
|
| 72 |
+
- Web applications
|
| 73 |
+
- E-commerce platforms
|
| 74 |
+
- Fashion analysis tools
|
| 75 |
+
|
| 76 |
+
## 🤝 Contributing
|
| 77 |
+
|
| 78 |
+
1. Fork the repository
|
| 79 |
+
2. Create a feature branch
|
| 80 |
+
3. Make your changes
|
| 81 |
+
4. Submit a pull request
|
| 82 |
+
|
| 83 |
+
---
|
| 84 |
+
|
| 85 |
+
**Made with ❤️ by the Loomi Team**
|
| 86 |
+
|
| 87 |
+
*AI-powered clothing analysis, production ready! 🎯*
|
__init__.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Loomi Clothing Detection API
|
| 3 |
+
============================
|
| 4 |
+
|
| 5 |
+
A clean, modular FastAPI application for AI-powered clothing analysis and segmentation.
|
| 6 |
+
|
| 7 |
+
Features:
|
| 8 |
+
- Async model loading
|
| 9 |
+
- Rate limiting and user management
|
| 10 |
+
- Queue-based processing
|
| 11 |
+
- Token system foundation
|
| 12 |
+
- Clean, maintainable code structure
|
| 13 |
+
|
| 14 |
+
Modules:
|
| 15 |
+
- main.py: Main FastAPI application
|
| 16 |
+
- config.py: Configuration management
|
| 17 |
+
- rate_limiter.py: Rate limiting and user tracking
|
| 18 |
+
- model_manager.py: Async ML model management
|
| 19 |
+
- request_queue.py: Background task processing
|
| 20 |
+
- user_manager.py: User identification and management
|
| 21 |
+
- clothing_detector.py: Core ML inference
|
| 22 |
+
- process.py: Image processing utilities
|
| 23 |
+
|
| 24 |
+
Author: Loomi Team
|
| 25 |
+
Version: 2.0.0
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
__version__ = "2.0.0"
|
| 29 |
+
__author__ = "Loomi Team"
|
| 30 |
+
__description__ = "AI-powered clothing analysis and segmentation API"
|
app.py
DELETED
|
@@ -1,168 +0,0 @@
|
|
| 1 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
|
| 2 |
-
from fastapi.responses import JSONResponse
|
| 3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
-
from pydantic import BaseModel
|
| 5 |
-
from typing import Optional, List
|
| 6 |
-
from process import get_dominant_color_from_base64
|
| 7 |
-
from clothing_detector import (
|
| 8 |
-
detect_clothing_types,
|
| 9 |
-
create_clothing_only_image,
|
| 10 |
-
get_clothing_detector,
|
| 11 |
-
)
|
| 12 |
-
import logging
|
| 13 |
-
import os
|
| 14 |
-
import base64
|
| 15 |
-
from starlette import status
|
| 16 |
-
|
| 17 |
-
# Logging setup
|
| 18 |
-
logging.basicConfig(level=logging.INFO)
|
| 19 |
-
logger = logging.getLogger(__name__)
|
| 20 |
-
|
| 21 |
-
app = FastAPI(title="FashionAI API", description="Clothing analysis & segmentation API")
|
| 22 |
-
|
| 23 |
-
# CORS (configure with env ALLOWED_ORIGINS="http://localhost:5173,https://your-site")
|
| 24 |
-
allowed_origins_env = os.getenv("ALLOWED_ORIGINS", "*")
|
| 25 |
-
allow_origins: List[str]
|
| 26 |
-
if allowed_origins_env.strip() == "*":
|
| 27 |
-
allow_origins = ["*"]
|
| 28 |
-
else:
|
| 29 |
-
allow_origins = [o.strip() for o in allowed_origins_env.split(",") if o.strip()]
|
| 30 |
-
|
| 31 |
-
app.add_middleware(
|
| 32 |
-
CORSMiddleware,
|
| 33 |
-
allow_origins=allow_origins,
|
| 34 |
-
allow_credentials=True,
|
| 35 |
-
allow_methods=["*"],
|
| 36 |
-
allow_headers=["*"],
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
# API settings
|
| 40 |
-
MAX_UPLOAD_MB = int(os.getenv("MAX_UPLOAD_MB", "10"))
|
| 41 |
-
MAX_UPLOAD_BYTES = MAX_UPLOAD_MB * 1024 * 1024
|
| 42 |
-
ALLOWED_CONTENT_TYPES = {
|
| 43 |
-
c.strip() for c in os.getenv("ALLOWED_CONTENT_TYPES", "image/jpeg,image/png,image/webp").split(",") if c.strip()
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
@app.exception_handler(Exception)
|
| 48 |
-
async def unhandled_exception_handler(request: Request, exc: Exception):
|
| 49 |
-
logging.exception("Unhandled server error: %s", exc)
|
| 50 |
-
return JSONResponse(
|
| 51 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
| 52 |
-
content={"error": "Internal Server Error"},
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
@app.on_event("startup")
|
| 56 |
-
async def maybe_warmup_model():
|
| 57 |
-
if os.getenv("WARMUP_ON_STARTUP", "true").lower() in {"1", "true", "yes"}:
|
| 58 |
-
# Warm up model on startup to reduce first request latency
|
| 59 |
-
get_clothing_detector()
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
@app.get("/")
|
| 63 |
-
async def api_root():
|
| 64 |
-
return JSONResponse({
|
| 65 |
-
"name": "FashionAI API",
|
| 66 |
-
"status": "ok",
|
| 67 |
-
"docs": "/docs",
|
| 68 |
-
"endpoints": ["/clothing", "/analyze", "/analyze/base64", "/labels", "/healthz"],
|
| 69 |
-
})
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
@app.get("/healthz")
|
| 73 |
-
async def health_check():
|
| 74 |
-
return {"status": "ok"}
|
| 75 |
-
|
| 76 |
-
@app.post("/clothing")
|
| 77 |
-
async def get_clothing_list(file: UploadFile = File(...)):
|
| 78 |
-
"""Detect all clothing types on image and return coordinates."""
|
| 79 |
-
logger.info(f"Processing clothing detection for file: {file.filename}")
|
| 80 |
-
# Validation
|
| 81 |
-
if file.content_type not in ALLOWED_CONTENT_TYPES:
|
| 82 |
-
raise HTTPException(status_code=415, detail=f"Unsupported content-type: {file.content_type}")
|
| 83 |
-
# Read with size guard
|
| 84 |
-
image_bytes = await file.read()
|
| 85 |
-
if len(image_bytes) > MAX_UPLOAD_BYTES:
|
| 86 |
-
raise HTTPException(status_code=413, detail=f"File too large. Max {MAX_UPLOAD_MB}MB")
|
| 87 |
-
clothing_result = detect_clothing_types(image_bytes)
|
| 88 |
-
logger.info(f"Clothing detection completed. Found {clothing_result.get('total_detected', 0)} items")
|
| 89 |
-
return clothing_result
|
| 90 |
-
|
| 91 |
-
@app.post("/analyze")
|
| 92 |
-
async def analyze_image(
|
| 93 |
-
file: UploadFile = File(...),
|
| 94 |
-
selected_clothing: Optional[str] = Form(None)
|
| 95 |
-
):
|
| 96 |
-
"""
|
| 97 |
-
Full image analysis: clothing detection, clothing-only image, dominant color.
|
| 98 |
-
|
| 99 |
-
- selected_clothing: Optional clothing type to focus on
|
| 100 |
-
- color: Dominant color of clothing
|
| 101 |
-
- clothing_analysis: Detected clothing types with stats
|
| 102 |
-
- clothing_only_image: Base64 PNG with transparent background
|
| 103 |
-
"""
|
| 104 |
-
logger.info(f"Processing full analysis for file: {file.filename}, selected_clothing: {selected_clothing}")
|
| 105 |
-
if file.content_type not in ALLOWED_CONTENT_TYPES:
|
| 106 |
-
raise HTTPException(status_code=415, detail=f"Unsupported content-type: {file.content_type}")
|
| 107 |
-
image_bytes = await file.read()
|
| 108 |
-
if len(image_bytes) > MAX_UPLOAD_BYTES:
|
| 109 |
-
raise HTTPException(status_code=413, detail=f"File too large. Max {MAX_UPLOAD_MB}MB")
|
| 110 |
-
|
| 111 |
-
# Step 1: Detect clothing types (cached segmentation)
|
| 112 |
-
logger.info("Detecting clothing types...")
|
| 113 |
-
clothing_result = detect_clothing_types(image_bytes)
|
| 114 |
-
|
| 115 |
-
# Step 2: Create clothing-only image (cached segmentation)
|
| 116 |
-
logger.info("Creating clothing-only image...")
|
| 117 |
-
clothing_only_image = create_clothing_only_image(image_bytes, selected_clothing)
|
| 118 |
-
|
| 119 |
-
# Step 3: Get dominant color from clothing-only image (no background)
|
| 120 |
-
logger.info("Getting dominant color from clothing-only image...")
|
| 121 |
-
color = get_dominant_color_from_base64(clothing_only_image)
|
| 122 |
-
|
| 123 |
-
logger.info("Full analysis completed successfully")
|
| 124 |
-
return JSONResponse(content={
|
| 125 |
-
"dominant_color": color,
|
| 126 |
-
"clothing_analysis": clothing_result,
|
| 127 |
-
"clothing_only_image": clothing_only_image,
|
| 128 |
-
"selected_clothing": selected_clothing
|
| 129 |
-
})
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
class Base64AnalyzeRequest(BaseModel):
|
| 133 |
-
image_base64: str
|
| 134 |
-
selected_clothing: Optional[str] = None
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
@app.post("/analyze/base64")
|
| 138 |
-
async def analyze_image_base64(payload: Base64AnalyzeRequest):
|
| 139 |
-
"""Analyze base64-encoded image (handy for React Native)."""
|
| 140 |
-
# Decode image from base64
|
| 141 |
-
if payload.image_base64.startswith("data:image"):
|
| 142 |
-
base64_data = payload.image_base64.split(",", 1)[1]
|
| 143 |
-
else:
|
| 144 |
-
base64_data = payload.image_base64
|
| 145 |
-
|
| 146 |
-
image_bytes = base64.b64decode(base64_data)
|
| 147 |
-
|
| 148 |
-
# 1) Clothing detection
|
| 149 |
-
clothing_result = detect_clothing_types(image_bytes)
|
| 150 |
-
|
| 151 |
-
# 2) Clothing-only image
|
| 152 |
-
clothing_only_image = create_clothing_only_image(image_bytes, payload.selected_clothing)
|
| 153 |
-
|
| 154 |
-
# 3) Dominant color from clothing-only image
|
| 155 |
-
color = get_dominant_color_from_base64(clothing_only_image)
|
| 156 |
-
|
| 157 |
-
return JSONResponse(content={
|
| 158 |
-
"dominant_color": color,
|
| 159 |
-
"clothing_analysis": clothing_result,
|
| 160 |
-
"clothing_only_image": clothing_only_image,
|
| 161 |
-
"selected_clothing": payload.selected_clothing,
|
| 162 |
-
})
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
@app.get("/labels")
|
| 166 |
-
async def get_labels():
|
| 167 |
-
detector = get_clothing_detector()
|
| 168 |
-
return {"labels": list(detector.labels.values())}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Dict, Any
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
|
| 5 |
+
@dataclass
|
| 6 |
+
class APIConfig:
|
| 7 |
+
"""Configuration class for the Loomi Clothing Detection API."""
|
| 8 |
+
|
| 9 |
+
# API Settings
|
| 10 |
+
title: str = "Loomi Clothing Detection API"
|
| 11 |
+
description: str = "AI-powered clothing analysis and segmentation API with rate limiting and user management"
|
| 12 |
+
version: str = "2.0.0"
|
| 13 |
+
|
| 14 |
+
# Server Settings
|
| 15 |
+
host: str = "0.0.0.0"
|
| 16 |
+
port: int = 7860
|
| 17 |
+
workers: int = 1
|
| 18 |
+
reload: bool = False
|
| 19 |
+
|
| 20 |
+
# File Upload Settings
|
| 21 |
+
max_upload_mb: int = 10
|
| 22 |
+
max_upload_bytes: int = field(init=False)
|
| 23 |
+
allowed_content_types: set = field(default_factory=lambda: {"image/jpeg", "image/png", "image/webp"})
|
| 24 |
+
|
| 25 |
+
# Rate Limiting
|
| 26 |
+
rate_limit_requests: int = 10 # requests per minute
|
| 27 |
+
rate_limit_window: int = 60 # seconds
|
| 28 |
+
max_concurrent_requests: int = 5 # per user
|
| 29 |
+
|
| 30 |
+
# Model Settings
|
| 31 |
+
model_warmup_on_startup: bool = True
|
| 32 |
+
model_cache_size: int = 10
|
| 33 |
+
|
| 34 |
+
# Queue Settings
|
| 35 |
+
num_workers: int = 2
|
| 36 |
+
queue_max_size: int = 100
|
| 37 |
+
|
| 38 |
+
# CORS Settings
|
| 39 |
+
allowed_origins: List[str] = field(default_factory=lambda: ["*"])
|
| 40 |
+
|
| 41 |
+
# Security Settings
|
| 42 |
+
enable_auth: bool = False
|
| 43 |
+
jwt_secret: str = "your-secret-key-change-in-production"
|
| 44 |
+
jwt_algorithm: str = "HS256"
|
| 45 |
+
jwt_expire_minutes: int = 60
|
| 46 |
+
|
| 47 |
+
# Token System Settings (Future)
|
| 48 |
+
enable_token_system: bool = False
|
| 49 |
+
free_tier_requests_per_day: int = 100
|
| 50 |
+
premium_tier_requests_per_day: int = 1000
|
| 51 |
+
|
| 52 |
+
# Logging Settings
|
| 53 |
+
log_level: str = "INFO"
|
| 54 |
+
log_format: str = "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 55 |
+
|
| 56 |
+
# Monitoring Settings
|
| 57 |
+
enable_metrics: bool = False
|
| 58 |
+
metrics_port: int = 8000
|
| 59 |
+
|
| 60 |
+
# Cache Settings
|
| 61 |
+
enable_redis: bool = False
|
| 62 |
+
redis_host: str = "localhost"
|
| 63 |
+
redis_port: int = 6379
|
| 64 |
+
redis_db: int = 0
|
| 65 |
+
redis_password: str = ""
|
| 66 |
+
|
| 67 |
+
# Hugging Face Spaces Settings
|
| 68 |
+
is_huggingface_space: bool = False
|
| 69 |
+
space_id: str = ""
|
| 70 |
+
hf_space: bool = False
|
| 71 |
+
hf_cache_dir: str = "/tmp/hf_cache"
|
| 72 |
+
|
| 73 |
+
def __post_init__(self):
|
| 74 |
+
"""Post-initialization to set computed fields and load from environment."""
|
| 75 |
+
# Load from environment variables
|
| 76 |
+
self.host = os.getenv("HOST", self.host)
|
| 77 |
+
self.port = int(os.getenv("PORT", str(self.port)))
|
| 78 |
+
self.workers = int(os.getenv("WORKERS", str(self.workers)))
|
| 79 |
+
self.reload = os.getenv("RELOAD", str(self.reload)).lower() == "true"
|
| 80 |
+
|
| 81 |
+
self.max_upload_mb = int(os.getenv("MAX_UPLOAD_MB", str(self.max_upload_mb)))
|
| 82 |
+
self.max_upload_bytes = self.max_upload_mb * 1024 * 1024
|
| 83 |
+
|
| 84 |
+
# Handle allowed content types
|
| 85 |
+
content_types_env = os.getenv("ALLOWED_CONTENT_TYPES")
|
| 86 |
+
if content_types_env:
|
| 87 |
+
self.allowed_content_types = {c.strip() for c in content_types_env.split(",") if c.strip()}
|
| 88 |
+
|
| 89 |
+
self.rate_limit_requests = int(os.getenv("RATE_LIMIT_REQUESTS", str(self.rate_limit_requests)))
|
| 90 |
+
self.rate_limit_window = int(os.getenv("RATE_LIMIT_WINDOW", str(self.rate_limit_window)))
|
| 91 |
+
self.max_concurrent_requests = int(os.getenv("MAX_CONCURRENT_REQUESTS", str(self.max_concurrent_requests)))
|
| 92 |
+
|
| 93 |
+
self.model_warmup_on_startup = os.getenv("MODEL_WARMUP_ON_STARTUP", str(self.model_warmup_on_startup)).lower() == "true"
|
| 94 |
+
self.model_cache_size = int(os.getenv("MODEL_CACHE_SIZE", str(self.model_cache_size)))
|
| 95 |
+
|
| 96 |
+
self.num_workers = int(os.getenv("NUM_WORKERS", str(self.num_workers)))
|
| 97 |
+
self.queue_max_size = int(os.getenv("QUEUE_MAX_SIZE", str(self.queue_max_size)))
|
| 98 |
+
|
| 99 |
+
# Handle allowed origins
|
| 100 |
+
origins_env = os.getenv("ALLOWED_ORIGINS")
|
| 101 |
+
if origins_env and origins_env != "*":
|
| 102 |
+
self.allowed_origins = [o.strip() for o in origins_env.split(",") if o.strip()]
|
| 103 |
+
|
| 104 |
+
self.enable_auth = os.getenv("ENABLE_AUTH", str(self.enable_auth)).lower() == "true"
|
| 105 |
+
self.jwt_secret = os.getenv("JWT_SECRET", self.jwt_secret)
|
| 106 |
+
self.jwt_algorithm = os.getenv("JWT_ALGORITHM", self.jwt_algorithm)
|
| 107 |
+
self.jwt_expire_minutes = int(os.getenv("JWT_EXPIRE_MINUTES", str(self.jwt_expire_minutes)))
|
| 108 |
+
|
| 109 |
+
self.enable_token_system = os.getenv("ENABLE_TOKEN_SYSTEM", str(self.enable_token_system)).lower() == "true"
|
| 110 |
+
self.free_tier_requests_per_day = int(os.getenv("FREE_TIER_REQUESTS_PER_DAY", str(self.free_tier_requests_per_day)))
|
| 111 |
+
self.premium_tier_requests_per_day = int(os.getenv("PREMIUM_TIER_REQUESTS_PER_DAY", str(self.premium_tier_requests_per_day)))
|
| 112 |
+
|
| 113 |
+
self.log_level = os.getenv("LOG_LEVEL", self.log_level)
|
| 114 |
+
self.log_format = os.getenv("LOG_FORMAT", self.log_format)
|
| 115 |
+
|
| 116 |
+
self.enable_metrics = os.getenv("ENABLE_METRICS", str(self.enable_metrics)).lower() == "true"
|
| 117 |
+
self.metrics_port = int(os.getenv("METRICS_PORT", str(self.metrics_port)))
|
| 118 |
+
|
| 119 |
+
self.enable_redis = os.getenv("ENABLE_REDIS", str(self.enable_redis)).lower() == "true"
|
| 120 |
+
self.redis_host = os.getenv("REDIS_HOST", self.redis_host)
|
| 121 |
+
self.redis_port = int(os.getenv("REDIS_PORT", str(self.redis_port)))
|
| 122 |
+
self.redis_db = int(os.getenv("REDIS_DB", str(self.redis_db)))
|
| 123 |
+
self.redis_password = os.getenv("REDIS_PASSWORD", self.redis_password)
|
| 124 |
+
|
| 125 |
+
# Hugging Face detection and settings
|
| 126 |
+
self.space_id = os.getenv("SPACE_ID", "")
|
| 127 |
+
self.hf_space = os.getenv("HF_SPACE", str(self.hf_space)).lower() == "true"
|
| 128 |
+
self.hf_cache_dir = os.getenv("HF_CACHE_DIR", self.hf_cache_dir)
|
| 129 |
+
|
| 130 |
+
# Determine if this is a Hugging Face Space
|
| 131 |
+
self.is_huggingface_space = bool(self.space_id.strip()) or self.hf_space
|
| 132 |
+
|
| 133 |
+
# Apply HF-specific optimizations
|
| 134 |
+
if self.is_huggingface_space:
|
| 135 |
+
self._apply_hf_optimizations()
|
| 136 |
+
|
| 137 |
+
def _apply_hf_optimizations(self):
|
| 138 |
+
"""Apply Hugging Face Spaces specific optimizations."""
|
| 139 |
+
# Set HF environment variables
|
| 140 |
+
os.environ["HF_HOME"] = self.hf_cache_dir
|
| 141 |
+
os.environ["TRANSFORMERS_CACHE"] = f"{self.hf_cache_dir}/transformers"
|
| 142 |
+
os.environ["HF_DATASETS_CACHE"] = f"{self.hf_cache_dir}/datasets"
|
| 143 |
+
|
| 144 |
+
# Optimize for HF Spaces
|
| 145 |
+
if self.workers > 1:
|
| 146 |
+
self.workers = 1 # HF Spaces work better with single worker
|
| 147 |
+
|
| 148 |
+
# Conservative rate limiting for HF
|
| 149 |
+
if self.rate_limit_requests > 15:
|
| 150 |
+
self.rate_limit_requests = 15
|
| 151 |
+
|
| 152 |
+
if self.max_concurrent_requests > 5:
|
| 153 |
+
self.max_concurrent_requests = 5
|
| 154 |
+
|
| 155 |
+
# Smaller cache sizes for HF
|
| 156 |
+
if self.model_cache_size > 5:
|
| 157 |
+
self.model_cache_size = 5
|
| 158 |
+
|
| 159 |
+
if self.queue_max_size > 25:
|
| 160 |
+
self.queue_max_size = 25
|
| 161 |
+
|
| 162 |
+
def get_rate_limit_info(self) -> Dict[str, Any]:
|
| 163 |
+
"""Get rate limit information for API responses."""
|
| 164 |
+
return {
|
| 165 |
+
"requests_per_minute": self.rate_limit_requests,
|
| 166 |
+
"window_seconds": self.rate_limit_window,
|
| 167 |
+
"concurrent_limit": self.max_concurrent_requests,
|
| 168 |
+
"file_size_limit_mb": self.max_upload_mb
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
def get_model_info(self) -> Dict[str, Any]:
|
| 172 |
+
"""Get model information for API responses."""
|
| 173 |
+
return {
|
| 174 |
+
"warmup_on_startup": self.model_warmup_on_startup,
|
| 175 |
+
"cache_size": self.model_cache_size,
|
| 176 |
+
"workers": self.num_workers
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
def get_security_info(self) -> Dict[str, Any]:
|
| 180 |
+
"""Get security information for API responses."""
|
| 181 |
+
return {
|
| 182 |
+
"authentication_enabled": self.enable_auth,
|
| 183 |
+
"cors_enabled": True,
|
| 184 |
+
"rate_limiting_enabled": True,
|
| 185 |
+
"file_validation_enabled": True
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
def get_hf_info(self) -> Dict[str, Any]:
|
| 189 |
+
"""Get Hugging Face specific information."""
|
| 190 |
+
return {
|
| 191 |
+
"is_hf_space": self.is_huggingface_space,
|
| 192 |
+
"space_id": self.space_id,
|
| 193 |
+
"cache_dir": self.hf_cache_dir,
|
| 194 |
+
"optimizations_applied": self.is_huggingface_space
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
def validate(self) -> List[str]:
|
| 198 |
+
"""Validate configuration and return list of warnings/errors."""
|
| 199 |
+
warnings = []
|
| 200 |
+
|
| 201 |
+
if self.rate_limit_requests < 1:
|
| 202 |
+
warnings.append("RATE_LIMIT_REQUESTS should be at least 1")
|
| 203 |
+
|
| 204 |
+
if self.max_concurrent_requests < 1:
|
| 205 |
+
warnings.append("MAX_CONCURRENT_REQUESTS should be at least 1")
|
| 206 |
+
|
| 207 |
+
if self.max_upload_mb < 1:
|
| 208 |
+
warnings.append("MAX_UPLOAD_MB should be at least 1")
|
| 209 |
+
|
| 210 |
+
if self.workers < 1:
|
| 211 |
+
warnings.append("WORKERS should be at least 1")
|
| 212 |
+
|
| 213 |
+
if self.is_huggingface_space and self.workers > 1:
|
| 214 |
+
warnings.append("Multiple workers not recommended in Hugging Face Spaces")
|
| 215 |
+
|
| 216 |
+
if self.is_huggingface_space and self.rate_limit_requests > 20:
|
| 217 |
+
warnings.append("High rate limits may cause issues in Hugging Face Spaces")
|
| 218 |
+
|
| 219 |
+
return warnings
|
| 220 |
+
|
| 221 |
+
# Global configuration instance
|
| 222 |
+
config = APIConfig()
|
| 223 |
+
|
| 224 |
+
# Validate configuration on import
|
| 225 |
+
if __name__ == "__main__":
|
| 226 |
+
warnings = config.validate()
|
| 227 |
+
if warnings:
|
| 228 |
+
print("Configuration warnings:")
|
| 229 |
+
for warning in warnings:
|
| 230 |
+
print(f" - {warning}")
|
| 231 |
+
else:
|
| 232 |
+
print("Configuration is valid!")
|
| 233 |
+
|
| 234 |
+
print(f"\nCurrent configuration:")
|
| 235 |
+
print(f" - Rate limit: {config.rate_limit_requests} requests per {config.rate_limit_window} seconds")
|
| 236 |
+
print(f" - Concurrent limit: {config.max_concurrent_requests} requests")
|
| 237 |
+
print(f" - File size limit: {config.max_upload_mb}MB")
|
| 238 |
+
print(f" - Workers: {config.workers}")
|
| 239 |
+
print(f" - Background workers: {config.num_workers}")
|
| 240 |
+
print(f" - Hugging Face Space: {config.is_huggingface_space}")
|
| 241 |
+
if config.is_huggingface_space:
|
| 242 |
+
print(f" - Space ID: {config.space_id}")
|
| 243 |
+
print(f" - Cache dir: {config.hf_cache_dir}")
|
env.example
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Loomi Clothing Detection API Configuration - HF Optimized
|
| 2 |
+
# Copy this to .env and modify as needed
|
| 3 |
+
|
| 4 |
+
# API Settings
|
| 5 |
+
HOST=0.0.0.0
|
| 6 |
+
PORT=7860
|
| 7 |
+
WORKERS=1
|
| 8 |
+
RELOAD=false
|
| 9 |
+
|
| 10 |
+
# File Upload Settings
|
| 11 |
+
MAX_UPLOAD_MB=15
|
| 12 |
+
ALLOWED_CONTENT_TYPES=image/jpeg,image/png,image/webp
|
| 13 |
+
|
| 14 |
+
# Rate Limiting (HF-optimized)
|
| 15 |
+
RATE_LIMIT_REQUESTS=15
|
| 16 |
+
RATE_LIMIT_WINDOW=60
|
| 17 |
+
MAX_CONCURRENT_REQUESTS=5
|
| 18 |
+
|
| 19 |
+
# Model Settings (HF-optimized)
|
| 20 |
+
MODEL_WARMUP_ON_STARTUP=true
|
| 21 |
+
MODEL_CACHE_SIZE=5
|
| 22 |
+
|
| 23 |
+
# Queue Settings (HF-optimized)
|
| 24 |
+
NUM_WORKERS=1
|
| 25 |
+
QUEUE_MAX_SIZE=25
|
| 26 |
+
|
| 27 |
+
# CORS Settings
|
| 28 |
+
ALLOWED_ORIGINS=*
|
| 29 |
+
|
| 30 |
+
# Security Settings
|
| 31 |
+
ENABLE_AUTH=false
|
| 32 |
+
JWT_SECRET=your-secret-key-change-in-production
|
| 33 |
+
JWT_ALGORITHM=HS256
|
| 34 |
+
JWT_EXPIRE_MINUTES=60
|
| 35 |
+
|
| 36 |
+
# Token System Settings (Future)
|
| 37 |
+
ENABLE_TOKEN_SYSTEM=false
|
| 38 |
+
FREE_TIER_REQUESTS_PER_DAY=100
|
| 39 |
+
PREMIUM_TIER_REQUESTS_PER_DAY=1000
|
| 40 |
+
|
| 41 |
+
# Logging Settings
|
| 42 |
+
LOG_LEVEL=INFO
|
| 43 |
+
LOG_FORMAT=%(asctime)s - %(name)s - %(levelname)s - %(message)s
|
| 44 |
+
|
| 45 |
+
# Monitoring Settings
|
| 46 |
+
ENABLE_METRICS=false
|
| 47 |
+
METRICS_PORT=8000
|
| 48 |
+
|
| 49 |
+
# Cache Settings
|
| 50 |
+
ENABLE_REDIS=false
|
| 51 |
+
REDIS_HOST=localhost
|
| 52 |
+
REDIS_PORT=6379
|
| 53 |
+
REDIS_DB=0
|
| 54 |
+
REDIS_PASSWORD=
|
| 55 |
+
|
| 56 |
+
# Hugging Face Spaces Settings
|
| 57 |
+
SPACE_ID=your-username/your-space-name
|
| 58 |
+
HF_SPACE=true
|
| 59 |
+
HF_CACHE_DIR=/tmp/hf_cache
|
model_manager.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Async model management for the Loomi Clothing Detection API.
|
| 3 |
+
"""
|
| 4 |
+
import asyncio
|
| 5 |
+
import logging
|
| 6 |
+
from config import config
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
class AsyncModelManager:
|
| 11 |
+
"""Manages asynchronous loading of the ML model."""
|
| 12 |
+
|
| 13 |
+
def __init__(self):
|
| 14 |
+
self.model_loaded = False
|
| 15 |
+
self.model_loading = False
|
| 16 |
+
self.loading_task = None
|
| 17 |
+
self._lock = asyncio.Lock()
|
| 18 |
+
|
| 19 |
+
async def ensure_model_loaded(self):
|
| 20 |
+
"""Ensure model is loaded, load it asynchronously if needed."""
|
| 21 |
+
if self.model_loaded:
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
async with self._lock:
|
| 25 |
+
if self.model_loaded:
|
| 26 |
+
return
|
| 27 |
+
|
| 28 |
+
if self.model_loading:
|
| 29 |
+
# Wait for existing loading task
|
| 30 |
+
if self.loading_task:
|
| 31 |
+
await self.loading_task
|
| 32 |
+
return
|
| 33 |
+
|
| 34 |
+
# Start loading task
|
| 35 |
+
self.model_loading = True
|
| 36 |
+
self.loading_task = asyncio.create_task(self._load_model())
|
| 37 |
+
await self.loading_task
|
| 38 |
+
|
| 39 |
+
async def _load_model(self):
|
| 40 |
+
"""Load model in background thread."""
|
| 41 |
+
try:
|
| 42 |
+
logger.info("Starting model loading in background...")
|
| 43 |
+
|
| 44 |
+
# Run model loading in thread pool to avoid blocking
|
| 45 |
+
loop = asyncio.get_event_loop()
|
| 46 |
+
await loop.run_in_executor(None, self._load_model_sync)
|
| 47 |
+
|
| 48 |
+
self.model_loaded = True
|
| 49 |
+
logger.info("Model loaded successfully!")
|
| 50 |
+
|
| 51 |
+
except Exception as e:
|
| 52 |
+
logger.error(f"Failed to load model: {e}")
|
| 53 |
+
self.model_loading = False
|
| 54 |
+
finally:
|
| 55 |
+
self.model_loading = False
|
| 56 |
+
|
| 57 |
+
def _load_model_sync(self):
|
| 58 |
+
"""Synchronous model loading (runs in thread pool)."""
|
| 59 |
+
try:
|
| 60 |
+
from clothing_detector import get_clothing_detector
|
| 61 |
+
detector = get_clothing_detector()
|
| 62 |
+
logger.info("Model loaded in background thread")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.error(f"Error loading model: {e}")
|
| 65 |
+
raise
|
| 66 |
+
|
| 67 |
+
def get_status(self) -> dict:
|
| 68 |
+
"""Get current model status for health checks."""
|
| 69 |
+
return {
|
| 70 |
+
"model_loaded": self.model_loaded,
|
| 71 |
+
"model_loading": self.model_loading
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
# Global model manager instance
|
| 75 |
+
model_manager = AsyncModelManager()
|
rate_limiter.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Rate limiting and user management for the Loomi Clothing Detection API.
|
| 3 |
+
"""
|
| 4 |
+
import asyncio
|
| 5 |
+
import time
|
| 6 |
+
from typing import Dict, List
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from config import config
|
| 10 |
+
|
| 11 |
+
@dataclass
|
| 12 |
+
class UserRequest:
|
| 13 |
+
"""Represents a user request for tracking."""
|
| 14 |
+
timestamp: float
|
| 15 |
+
endpoint: str
|
| 16 |
+
file_size: int
|
| 17 |
+
|
| 18 |
+
class RateLimiter:
|
| 19 |
+
"""Manages rate limiting and concurrent request tracking per user."""
|
| 20 |
+
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.user_requests: Dict[str, List[UserRequest]] = defaultdict(list)
|
| 23 |
+
self.user_concurrent: Dict[str, int] = defaultdict(int)
|
| 24 |
+
self.lock = asyncio.Lock()
|
| 25 |
+
|
| 26 |
+
async def check_rate_limit(self, user_id: str, endpoint: str) -> bool:
|
| 27 |
+
"""Check if user has exceeded rate limit."""
|
| 28 |
+
async with self.lock:
|
| 29 |
+
now = time.time()
|
| 30 |
+
user_reqs = self.user_requests[user_id]
|
| 31 |
+
|
| 32 |
+
# Remove old requests outside the window
|
| 33 |
+
user_reqs = [req for req in user_reqs if now - req.timestamp < config.rate_limit_window]
|
| 34 |
+
self.user_requests[user_id] = user_reqs
|
| 35 |
+
|
| 36 |
+
# Check rate limit
|
| 37 |
+
return len(user_reqs) < config.rate_limit_requests
|
| 38 |
+
|
| 39 |
+
async def check_concurrent_limit(self, user_id: str) -> bool:
|
| 40 |
+
"""Check if user has exceeded concurrent request limit."""
|
| 41 |
+
async with self.lock:
|
| 42 |
+
return self.user_concurrent[user_id] < config.max_concurrent_requests
|
| 43 |
+
|
| 44 |
+
async def add_request(self, user_id: str, endpoint: str, file_size: int):
|
| 45 |
+
"""Add a new request to user's history."""
|
| 46 |
+
async with self.lock:
|
| 47 |
+
now = time.time()
|
| 48 |
+
self.user_requests[user_id].append(UserRequest(now, endpoint, file_size))
|
| 49 |
+
self.user_concurrent[user_id] += 1
|
| 50 |
+
|
| 51 |
+
async def remove_request(self, user_id: str):
|
| 52 |
+
"""Remove a completed request from concurrent count."""
|
| 53 |
+
async with self.lock:
|
| 54 |
+
if self.user_concurrent[user_id] > 0:
|
| 55 |
+
self.user_concurrent[user_id] -= 1
|
| 56 |
+
|
| 57 |
+
def get_user_stats(self, user_id: str) -> Dict:
|
| 58 |
+
"""Get user statistics for API responses."""
|
| 59 |
+
now = time.time()
|
| 60 |
+
user_reqs = self.user_requests[user_id]
|
| 61 |
+
concurrent = self.user_concurrent[user_id]
|
| 62 |
+
|
| 63 |
+
# Calculate usage in current window
|
| 64 |
+
window_start = now - config.rate_limit_window
|
| 65 |
+
requests_in_window = len([req for req in user_reqs if req.timestamp >= window_start])
|
| 66 |
+
|
| 67 |
+
return {
|
| 68 |
+
"user_id": user_id,
|
| 69 |
+
"requests_in_window": requests_in_window,
|
| 70 |
+
"requests_limit": config.rate_limit_requests,
|
| 71 |
+
"concurrent_requests": concurrent,
|
| 72 |
+
"concurrent_limit": config.max_concurrent_requests,
|
| 73 |
+
"window_remaining": config.rate_limit_window - (now - window_start),
|
| 74 |
+
"total_requests_today": len([req for req in user_reqs if req.timestamp >= now - 86400])
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
# Global rate limiter instance
|
| 78 |
+
rate_limiter = RateLimiter()
|
request_queue.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Request queue management for the Loomi Clothing Detection API.
|
| 3 |
+
"""
|
| 4 |
+
import asyncio
|
| 5 |
+
import logging
|
| 6 |
+
from typing import Any, Callable
|
| 7 |
+
from config import config
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
class RequestQueue:
|
| 12 |
+
"""Manages background processing of heavy API requests."""
|
| 13 |
+
|
| 14 |
+
def __init__(self):
|
| 15 |
+
self.queue = asyncio.Queue()
|
| 16 |
+
self.processing = False
|
| 17 |
+
self.workers = []
|
| 18 |
+
|
| 19 |
+
async def start_workers(self, num_workers: int = None):
|
| 20 |
+
"""Start background workers."""
|
| 21 |
+
if num_workers is None:
|
| 22 |
+
num_workers = config.num_workers
|
| 23 |
+
|
| 24 |
+
for i in range(num_workers):
|
| 25 |
+
worker = asyncio.create_task(self._worker(f"worker-{i}"))
|
| 26 |
+
self.workers.append(worker)
|
| 27 |
+
logger.info(f"Started {num_workers} background workers")
|
| 28 |
+
|
| 29 |
+
async def _worker(self, name: str):
|
| 30 |
+
"""Background worker for processing requests."""
|
| 31 |
+
logger.info(f"Worker {name} started")
|
| 32 |
+
while True:
|
| 33 |
+
try:
|
| 34 |
+
task = await self.queue.get()
|
| 35 |
+
if task is None: # Shutdown signal
|
| 36 |
+
break
|
| 37 |
+
|
| 38 |
+
user_id, endpoint, process_func, args, future = task
|
| 39 |
+
try:
|
| 40 |
+
# Process the request
|
| 41 |
+
result = await process_func(*args)
|
| 42 |
+
future.set_result(result)
|
| 43 |
+
except Exception as e:
|
| 44 |
+
future.set_exception(e)
|
| 45 |
+
finally:
|
| 46 |
+
self.queue.task_done()
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
logger.error(f"Worker {name} error: {e}")
|
| 50 |
+
|
| 51 |
+
async def submit_task(self, user_id: str, endpoint: str, process_func: Callable, *args) -> Any:
|
| 52 |
+
"""Submit a task to the queue."""
|
| 53 |
+
future = asyncio.Future()
|
| 54 |
+
await self.queue.put((user_id, endpoint, process_func, args, future))
|
| 55 |
+
return await future
|
| 56 |
+
|
| 57 |
+
async def shutdown(self):
|
| 58 |
+
"""Shutdown workers."""
|
| 59 |
+
for _ in self.workers:
|
| 60 |
+
await self.queue.put(None)
|
| 61 |
+
await asyncio.gather(*self.workers, return_exceptions=True)
|
| 62 |
+
|
| 63 |
+
def get_status(self) -> dict:
|
| 64 |
+
"""Get current queue status for health checks."""
|
| 65 |
+
return {
|
| 66 |
+
"queue_size": self.queue.qsize(),
|
| 67 |
+
"active_workers": len(self.workers)
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
# Global request queue instance
|
| 71 |
+
request_queue = RequestQueue()
|
requirements.txt
CHANGED
|
@@ -1,12 +1,28 @@
|
|
|
|
|
| 1 |
fastapi
|
| 2 |
uvicorn[standard]
|
| 3 |
-
pillow
|
| 4 |
python-multipart
|
| 5 |
-
|
| 6 |
-
|
|
|
|
| 7 |
opencv-python-headless
|
|
|
|
|
|
|
|
|
|
| 8 |
transformers
|
| 9 |
torch
|
| 10 |
torchvision
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core FastAPI dependencies
|
| 2 |
fastapi
|
| 3 |
uvicorn[standard]
|
|
|
|
| 4 |
python-multipart
|
| 5 |
+
|
| 6 |
+
# Image processing
|
| 7 |
+
pillow
|
| 8 |
opencv-python-headless
|
| 9 |
+
rembg
|
| 10 |
+
|
| 11 |
+
# Machine Learning
|
| 12 |
transformers
|
| 13 |
torch
|
| 14 |
torchvision
|
| 15 |
+
onnxruntime
|
| 16 |
+
|
| 17 |
+
# Data processing
|
| 18 |
+
numpy
|
| 19 |
+
scikit-learn
|
| 20 |
+
|
| 21 |
+
# Configuration and utilities
|
| 22 |
+
python-dotenv
|
| 23 |
+
|
| 24 |
+
# Optional dependencies (uncomment if needed)
|
| 25 |
+
# redis # For Redis caching
|
| 26 |
+
# celery # For task queue
|
| 27 |
+
# prometheus-client # For metrics
|
| 28 |
+
# structlog # For structured logging
|
start.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Startup script for Loomi Clothing Detection API
|
| 4 |
+
Supports different deployment scenarios and configurations
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
import argparse
|
| 10 |
+
import uvicorn
|
| 11 |
+
from config import config
|
| 12 |
+
|
| 13 |
+
def main():
|
| 14 |
+
parser = argparse.ArgumentParser(description="Start Loomi Clothing Detection API")
|
| 15 |
+
parser.add_argument("--host", default=config.host, help="Host to bind to")
|
| 16 |
+
parser.add_argument("--port", type=int, default=config.port, help="Port to bind to")
|
| 17 |
+
parser.add_argument("--workers", type=int, default=config.workers, help="Number of worker processes")
|
| 18 |
+
parser.add_argument("--reload", action="store_true", help="Enable auto-reload for development")
|
| 19 |
+
parser.add_argument("--config", help="Path to .env file")
|
| 20 |
+
parser.add_argument("--huggingface", action="store_true", help="Optimize for Hugging Face Spaces")
|
| 21 |
+
|
| 22 |
+
args = parser.parse_args()
|
| 23 |
+
|
| 24 |
+
# Load environment variables if specified
|
| 25 |
+
if args.config:
|
| 26 |
+
from dotenv import load_dotenv
|
| 27 |
+
load_dotenv(args.config)
|
| 28 |
+
# Reload config after loading .env
|
| 29 |
+
from importlib import reload
|
| 30 |
+
import config
|
| 31 |
+
reload(config)
|
| 32 |
+
config = config.config
|
| 33 |
+
|
| 34 |
+
# Hugging Face Spaces optimization
|
| 35 |
+
if args.huggingface:
|
| 36 |
+
print("🚀 Optimizing for Hugging Face Spaces...")
|
| 37 |
+
os.environ["WORKERS"] = "1"
|
| 38 |
+
os.environ["NUM_WORKERS"] = "1"
|
| 39 |
+
os.environ["MODEL_WARMUP_ON_STARTUP"] = "true"
|
| 40 |
+
args.workers = 1
|
| 41 |
+
args.reload = False
|
| 42 |
+
|
| 43 |
+
# Validate configuration
|
| 44 |
+
warnings = config.validate()
|
| 45 |
+
if warnings:
|
| 46 |
+
print("⚠️ Configuration warnings:")
|
| 47 |
+
for warning in warnings:
|
| 48 |
+
print(f" - {warning}")
|
| 49 |
+
print()
|
| 50 |
+
|
| 51 |
+
# Print startup information
|
| 52 |
+
print("🎯 Loomi Clothing Detection API")
|
| 53 |
+
print(f" Version: {config.version}")
|
| 54 |
+
print(f" Host: {args.host}:{args.port}")
|
| 55 |
+
print(f" Workers: {args.workers}")
|
| 56 |
+
print(f" Background workers: {config.num_workers}")
|
| 57 |
+
print(f" Rate limit: {config.rate_limit_requests} req/min")
|
| 58 |
+
print(f" Concurrent limit: {config.max_concurrent_requests}")
|
| 59 |
+
print(f" File size limit: {config.max_upload_mb}MB")
|
| 60 |
+
print(f" Hugging Face Space: {config.is_huggingface_space}")
|
| 61 |
+
print()
|
| 62 |
+
|
| 63 |
+
# Start the server
|
| 64 |
+
try:
|
| 65 |
+
uvicorn.run(
|
| 66 |
+
"main:app",
|
| 67 |
+
host=args.host,
|
| 68 |
+
port=args.port,
|
| 69 |
+
workers=args.workers if not args.reload else 1,
|
| 70 |
+
reload=args.reload,
|
| 71 |
+
log_level=config.log_level.lower(),
|
| 72 |
+
access_log=True,
|
| 73 |
+
use_colors=True
|
| 74 |
+
)
|
| 75 |
+
except KeyboardInterrupt:
|
| 76 |
+
print("\n👋 Shutting down gracefully...")
|
| 77 |
+
except Exception as e:
|
| 78 |
+
print(f"❌ Error starting server: {e}")
|
| 79 |
+
sys.exit(1)
|
| 80 |
+
|
| 81 |
+
if __name__ == "__main__":
|
| 82 |
+
main()
|
user_manager.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
User management and identification for the Loomi Clothing Detection API.
|
| 3 |
+
"""
|
| 4 |
+
import hashlib
|
| 5 |
+
from typing import Optional
|
| 6 |
+
from fastapi import Request, Depends
|
| 7 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 8 |
+
|
| 9 |
+
# Security
|
| 10 |
+
security = HTTPBearer(auto_error=False)
|
| 11 |
+
|
| 12 |
+
def get_user_id(request: Request, credentials: Optional[HTTPAuthorizationCredentials] = Depends(security)) -> str:
|
| 13 |
+
"""
|
| 14 |
+
Extract user ID from request.
|
| 15 |
+
In production, validate JWT token.
|
| 16 |
+
"""
|
| 17 |
+
if credentials:
|
| 18 |
+
# In production, decode JWT and extract user_id
|
| 19 |
+
return f"user_{hashlib.md5(credentials.credentials.encode()).hexdigest()[:8]}"
|
| 20 |
+
|
| 21 |
+
# Fallback: use IP address + User-Agent hash
|
| 22 |
+
client_ip = request.client.host
|
| 23 |
+
user_agent = request.headers.get("user-agent", "")
|
| 24 |
+
user_hash = hashlib.md5(f"{client_ip}:{user_agent}".encode()).hexdigest()[:8]
|
| 25 |
+
return f"anon_{user_hash}"
|