karlopintaric's picture
Upload 4 files
dfd0008
raw
history blame
7.78 kB
import io
import os
import time
from json import JSONDecodeError
import math
import requests
import soundfile as sf
import streamlit as st
if os.environ.get("IS_DOCKER", False):
backend = "http://api:7860"
else:
backend = "http://0.0.0.0:7860"
INSTRUMENTS = {
"tru": "Trumpet",
"sax": "Saxophone",
"vio": "Violin",
"gac": "Acoustic Guitar",
"org": "Organ",
"cla": "Clarinet",
"flu": "Flute",
"voi": "Voice",
"gel": "Electric Guitar",
"cel": "Cello",
"pia": "Piano",
}
def load_audio():
"""
Upload a WAV audio file and display it in a Streamlit app.
:return: A BytesIO object representing the uploaded audio file, or None if no file was uploaded.
:rtype: Optional[BytesIO]
"""
audio_file = st.file_uploader(label="Upload audio file", type="wav", accept_multiple_files=True)
if len(audio_file) > 0:
st.audio(audio_file[0])
return audio_file
else:
return None
@st.cache_data(show_spinner=False)
def check_for_api(max_tries: int):
"""
Check if the API is running by making a health check request.
:param max_tries: The maximum number of attempts to check the API's health.
:type max_tries: int
:return: True if the API is running, False otherwise.
:rtype: bool
"""
trial_count = 0
with st.spinner("Waiting for API..."):
while trial_count <= max_tries:
try:
response = health_check()
if response:
return True
except requests.exceptions.ConnectionError:
trial_count += 1
# Handle connection error, e.g. API not yet running
time.sleep(5) # Sleep for 1 second before retrying
st.error("API is not running. Please refresh the page to try again.", icon="🚨")
st.stop()
def cut_audio_file(audio_file, name):
"""
Cut an audio file and return the cut audio data as a tuple.
:param audio_file: The path of the audio file to be cut.
:type audio_file: str
:param name: The name of the audio file to be cut.
:type name: str
:raises RuntimeError: If the audio file cannot be read.
:return: A tuple containing the name and the cut audio data as a BytesIO object.
:rtype: tuple
"""
try:
audio_data, sample_rate = sf.read(audio_file)
except RuntimeError as e:
raise e
# Display audio duration
duration = round(len(audio_data) / sample_rate, 2)
st.info(f"Audio Duration: {duration} seconds")
# Get start and end time for cutting
start_time = st.number_input("Start Time (seconds)", min_value=0.0, max_value=duration - 1, step=0.1)
end_time = st.number_input("End Time (seconds)", min_value=start_time, value=duration, max_value=duration, step=0.1)
# Convert start and end time to sample indices
start_sample = int(start_time * sample_rate)
end_sample = int(end_time * sample_rate)
# Cut audio
cut_audio_data = audio_data[start_sample:end_sample]
# Create a temporary in-memory file for cut audio
audio_file = io.BytesIO()
sf.write(audio_file, cut_audio_data, sample_rate, format="wav")
# Display cut audio
st.audio(audio_file, format="audio/wav")
audio_file = (name, audio_file)
return audio_file
def display_predictions(predictions: dict):
"""
Display the predictions using instrument names instead of codes.
:param predictions: A dictionary containing the filenames and instruments detected in them.
:type predictions: dict
"""
# Display the results using instrument names instead of codes
for filename, instruments in predictions.items():
st.subheader(filename)
if isinstance(instruments, str):
st.write(instruments)
else:
with st.container():
col1, col2 = st.columns([1, 3])
present_instruments = [
INSTRUMENTS[instrument_code] for instrument_code, presence in instruments.items() if presence
]
if present_instruments:
for instrument_name in present_instruments:
with col1:
st.write(instrument_name)
with col2:
st.write("✔️")
else:
st.write("No instruments found in this file.")
def health_check():
"""
Sends a health check request to the API and checks if it's running.
:return: Returns True if the API is running, else False.
:rtype: bool
"""
# Send a health check request to the API
response = requests.get(f"{backend}/health-check", timeout=100)
# Check if the API is running
if response.status_code == 200:
return True
else:
return False
def predict(data, model_name):
"""
Sends a POST request to the API with the provided data and model name.
:param data: The audio data to be used for prediction.
:type data: bytes
:param model_name: The name of the model to be used for prediction.
:type model_name: str
:return: The response from the API.
:rtype: requests.Response
"""
file = {"file": data}
request_data = {"model_name": model_name}
response = requests.post(
f"{backend}/predict", params=request_data, files=file, timeout=300
) # Replace with your API endpoint URL
return response
@st.cache_data(show_spinner=False)
def predict_single(audio_file, name, selected_model):
"""
Predicts the instruments in a single audio file using the selected model.
:param audio_file: The audio file to be used for prediction.
:type audio_file: bytes
:param name: The name of the audio file.
:type name: str
:param selected_model: The name of the selected model.
:type selected_model: str
:return: A dictionary containing the predicted instruments for the audio file.
:rtype: dict
"""
predictions = {}
with st.spinner("Predicting instruments..."):
response = predict(audio_file, selected_model)
if response.status_code == 200:
prediction = response.json()["prediction"]
predictions[name] = prediction.get(name, "Error making prediction")
else:
st.write(response)
try:
st.json(response.json())
except JSONDecodeError:
st.error(response.text)
st.stop()
return predictions
@st.cache_data(show_spinner=False)
def predict_multiple(audio_files, selected_model):
"""
Generates predictions for multiple audio files using the selected model.
:param audio_files: A list of audio files to make predictions on.
:type audio_files: List[UploadedFile]
:param selected_model: The model to use for making predictions.
:type selected_model: str
:return: A dictionary where the keys are the names of the audio files and the values are the predicted labels.
:rtype: Dict[str, str]
"""
predictions = {}
progress_text = "Getting predictions for all files. Please wait."
progress_bar = st.empty()
progress_bar.progress(0, text=progress_text)
num_files = len(audio_files)
for i, file in enumerate(audio_files):
name = file.name
response = predict(file, selected_model)
if response.status_code == 200:
prediction = response.json()["prediction"]
predictions[name] = prediction[name]
progress_bar.progress((i + 1) / num_files, text=progress_text)
else:
predictions[name] = "Error making prediction."
progress_bar.empty()
return predictions
if __name__ == "__main__":
pass