Karlo Pintaric
Upload 25 files
fdc1efd
raw
history blame
10.1 kB
from glob import glob
from pathlib import Path
from types import SimpleNamespace
from typing import Union
import librosa
import numpy as np
import yaml
CLASSES = ["tru", "sax", "vio", "gac", "org", "cla", "flu", "voi", "gel", "cel", "pia"]
def get_wav_files(base_path):
"""
Function to recursively get all the .wav files in a directory.
:param base_path: The base path of the directory to search.
:type base_path: str or pathlib.Path
:return: A list of paths to .wav files found in the directory.
:rtype: List[str]
"""
return glob(f"{base_path}/**/*.wav", recursive=True)
def parse_config(config_path):
"""
Parse a YAML configuration file and return the configuration as a SimpleNamespace object.
:param config_path: The path to the YAML configuration file.
:type config_path: str or pathlib.Path
:return: A SimpleNamespace object representing the configuration.
:rtype: types.SimpleNamespace
"""
with open(config_path) as file:
return SimpleNamespace(**yaml.safe_load(file))
def init_transforms(fn_dict, module):
"""
Initialize a list of transforms from a dictionary of function names and their parameters.
:param fn_dict: A dictionary where keys are the names of transform functions
and values are dictionaries of parameters.
:type fn_dict: Dict[str, Dict[str, Any]]
:param module: The module where the transform functions are defined.
:type module: module
:return: A list of transform functions.
:rtype: List[Callable]
"""
transforms = init_objs(fn_dict, module)
if transforms is not None:
transforms = ComposeTransforms(transforms)
return transforms
def init_objs(fn_dict, module):
"""
Initialize a list of objects from a dictionary of object names and their parameters.
:param fn_dict: A dictionary where keys are the names of object classes and values are dictionaries of parameters.
:type fn_dict: Dict[str, Dict[str, Any]]
:param module: The module where the object classes are defined.
:type module: module
:return: A list of objects.
:rtype: List[Any]
"""
if fn_dict is None:
return None
transforms = []
for transform in fn_dict.keys():
fn = getattr(module, transform)
if fn is None:
raise NotImplementedError(
"The attribute '{}' is not implemented in the module '{}'.".format(transform, module.__name__)
)
fn_args = fn_dict[transform]
if fn_args is None:
transforms.append(fn())
else:
transforms.append(fn(**fn_args))
return transforms
def init_obj(fn_dict, module, *args, **kwargs):
"""
Initialize an object by calling a function with the provided arguments.
:param fn_dict: A dictionary that maps the function name to its arguments.
:type fn_dict: dict or None
:param module: The module containing the function.
:type module: module
:param args: The positional arguments for the function.
:type args: tuple
:param kwargs: The keyword arguments for the function.
:type kwargs: dict
:raises AssertionError: If a keyword argument is already specified in fn_dict.
:return: The result of calling the function with the provided arguments.
:rtype: Any
"""
if fn_dict is None:
return None
name = list(fn_dict.keys())[0]
fn = getattr(module, name)
if fn is None:
raise NotImplementedError(
"The attribute '{}' is not implemented in the module '{}'.".format(name, module.__name__)
)
fn_args = fn_dict[name]
if fn_args is not None:
assert all(k not in fn_args for k in kwargs)
fn_args.update(kwargs)
return fn(*args, **fn_args)
else:
return fn(*args, **kwargs)
class ComposeTransforms:
"""
Composes a list of transforms to be applied in sequence to input data.
:param transforms: A list of transforms to be applied.
:type transforms: List[callable]
"""
def __init__(self, transforms: list):
self.transforms = transforms
def __call__(self, data, *args):
for t in self.transforms:
data = t(data, *args)
return data
def load_raw_file(path: Union[str, Path]):
"""
Loads an audio file from disk and returns its raw waveform and sample rate.
:param path: The path to the audio file to load.
:type path: Union[str, Path]
:return: A tuple containing the raw waveform and sample rate.
:rtype: tuple
"""
return librosa.load(path, sr=None, mono=False)
def get_onset(signal, sr):
"""
Computes the onset of an audio signal.
:param signal: The audio signal.
:type signal: np.ndarray
:param sr: The sample rate of the audio signal.
:type sr: int
:return: The onset of the audio signal in seconds.
:rtype: float
"""
onset = librosa.onset.onset_detect(y=signal, sr=sr, units="time")[0]
return onset
def get_bpm(signal, sr):
"""
Computes the estimated beats per minute (BPM) of an audio signal.
:param signal: The audio signal.
:type signal: np.ndarray
:param sr: The sample rate of the audio signal.
:type sr: int
:return: The estimated BPM of the audio signal, or None if the BPM cannot be computed.
:rtype: Union[float, None]
"""
bpm, _ = librosa.beat.beat_track(y=signal, sr=sr)
return bpm if bpm != 0 else None
def get_pitch(signal, sr):
"""
Computes the estimated pitch of an audio signal.
:param signal: The audio signal.
:type signal: np.ndarray
:param sr: The sample rate of the audio signal.
:type sr: int
:return: The estimated pitch of the audio signal in logarithmic scale, or None if the pitch cannot be computed.
:rtype: Union[float, None]
"""
eps = 1e-8
fmin = librosa.note_to_hz("C2")
fmax = librosa.note_to_hz("C7")
pitch, _, _ = librosa.pyin(y=signal, sr=sr, fmin=fmin, fmax=fmax)
if not np.isnan(pitch).all():
mean_log_pitch = np.nanmean(np.log(pitch + eps))
else:
mean_log_pitch = None
return mean_log_pitch
def get_file_info(path: Union[str, Path], extract_music_features: bool):
"""
Loads an audio file and computes some basic information about it,
such as pitch, BPM, onset time, duration, sample rate, and number of channels.
:param path: The path to the audio file.
:type path: Union[str, Path]
:param extract_music_features: Whether to extract music features such as pitch, BPM, and onset time.
:type extract_music_features: bool
:return: A dictionary containing information about the audio file.
:rtype: dict
"""
path = str(path) if isinstance(path, Path) else path
signal, sr = load_raw_file(path)
channels = signal.shape[0]
signal = librosa.to_mono(signal)
duration = len(signal) / sr
pitch, bpm, onset = None, None, None
if extract_music_features:
pitch = get_pitch(signal, sr)
bpm = get_bpm(signal, sr)
onset = get_onset(signal, sr)
return {
"path": path,
"pitch": pitch,
"bpm": bpm,
"onset": onset,
"sample_rate": sr,
"duration": duration,
"channels": channels,
}
def sync_pitch(file_to_sync: np.ndarray, sr: int, pitch_base: float, pitch: float):
"""
Shift the pitch of an audio file to match a new pitch value.
:param file_to_sync: The input audio file as a NumPy array.
:type file_to_sync: np.ndarray
:param sr: The sample rate of the input file.
:type sr: int
:param pitch_base: The pitch value of the original file.
:type pitch_base: float
:param pitch: The pitch value to synchronize the input file to.
:type pitch: float
:return: The synchronized audio file as a NumPy array.
:rtype: np.ndarray
"""
assert np.ndim(file_to_sync) == 1, "Input array has more than one dimensions"
if any(np.isnan(x) for x in [pitch_base, pitch]):
return file_to_sync
steps = np.round(12 * np.log2(np.exp(pitch_base) / np.exp(pitch)), 0)
return librosa.effects.pitch_shift(y=file_to_sync, sr=sr, n_steps=steps)
def sync_bpm(file_to_sync: np.ndarray, sr: int, bpm_base: float, bpm: float):
"""
Stretch or compress the duration of an audio file to match a new tempo.
:param file_to_sync: The input audio file as a NumPy array.
:type file_to_sync: np.ndarray
:param sr: The sample rate of the input file.
:type sr: int
:param bpm_base: The tempo of the original file.
:type bpm_base: float
:param bpm: The tempo to synchronize the input file to.
:type bpm: float
:return: The synchronized audio file as a NumPy array.
:rtype: np.ndarray
"""
assert np.ndim(file_to_sync) == 1, "Input array has more than one dimensions"
if any(np.isnan(x) for x in [bpm_base, bpm]):
return file_to_sync
return librosa.effects.time_stretch(y=file_to_sync, rate=bpm_base / bpm)
def sync_onset(file_to_sync: np.ndarray, sr: int, onset_base: float, onset: float):
"""
Sync the onset of an audio signal by adding or removing silence at the beginning.
:param file_to_sync: The audio signal to synchronize.
:type file_to_sync: np.ndarray
:param sr: The sample rate of the audio signal.
:type sr: int
:param onset_base: The onset of the reference signal in seconds.
:type onset_base: float
:param onset: The onset of the signal to synchronize in seconds.
:type onset: float
:raises AssertionError: If the input array has more than one dimension.
:return: The synchronized audio signal.
:rtype: np.ndarray
"""
assert np.ndim(file_to_sync) == 1, "Input array has more than one dimensions"
if any(np.isnan(x) for x in [onset_base, onset]):
return file_to_sync
diff = int(round(abs(onset_base * sr - onset * sr), 0))
if onset_base > onset:
return np.pad(file_to_sync, (diff, 0), mode="constant", constant_values=0)
else:
return file_to_sync[diff:]