Karlo Pintaric
Upload 25 files
fdc1efd
raw
history blame
11.5 kB
import os
from abc import ABC, abstractmethod
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
from torchaudio.transforms import FrequencyMasking, TimeMasking
from torchvision.transforms import Compose
from transformers import ASTFeatureExtractor
class Transform(ABC):
"""Abstract base class for audio transformations."""
@abstractmethod
def __call__(self):
"""
Abstract method to apply the transformation.
:raises NotImplementedError: If the subclass does not implement this method.
"""
pass
class Preprocess(ABC):
"""Abstract base class for preprocessing data.
This class defines the interface for preprocessing data. Subclasses must implement the call method.
"""
@abstractmethod
def __call__(self):
"""Process the data.
This method must be implemented by subclasses.
:raises NotImplementedError: Subclasses must implement this method.
"""
pass
class OneHotEncode(Transform):
"""Transform labels to one-hot encoded tensor.
This class is a transform that takes a list of labels and returns a one-hot encoded tensor.
The labels are converted to a tensor with one-hot encoding using the specified classes.
:param c: A list of classes to be used for one-hot encoding.
:type c: list
:return: A one-hot encoded tensor.
:rtype: torch.Tensor
"""
def __init__(self, c: list):
self.c = c
def __call__(self, labels):
"""
Transform labels to one-hot encoded tensor.
:param labels: A list of labels to be encoded.
:type labels: list
:return: A one-hot encoded tensor.
:rtype: torch.Tensor
"""
target = torch.zeros(len(self.c), dtype=torch.float)
for label in labels:
idx = self.c.index(label)
target[idx] = 1
return target
class ParentMultilabel(Transform):
"""
A transform that extracts a list of labels from the parent directory name of a file path.
:param sep: The separator used to split the parent directory name into labels. Defaults to " ".
:type sep: str
"""
def __init__(self, sep=" "):
self.sep = sep
def __call__(self, path):
"""
Extract a list of labels from the parent directory name of a file path.
:param path: The file path from which to extract labels.
:type path: str
:return: A list of labels extracted from the parent directory name of the input file path.
:rtype: List[str]
"""
label = path.split(os.path.sep)[-2].split(self.sep)
return label
class LabelsFromTxt(Transform):
"""
Extract multilabel parent directory from file path.
This class is a transform that extracts a multilabel parent directory from a file path.
The directory names are split by a specified separator.
:param sep: The separator used to split the directory names. Defaults to " ".
:type sep: str
"""
def __init__(self, delimiter=None):
self.delimiter = delimiter
def __call__(self, path):
"""
Extract multilabel parent directory from file path.
:param path: The path of the file to extract the multilabel directory from.
:type path: str
:return: A list of directory names representing the multilabel parent directory.
:rtype: list
"""
path = path.replace("wav", "txt")
label = np.loadtxt(path, dtype=str, ndmin=1, delimiter=self.delimiter)
return label
class PreprocessPipeline(Preprocess):
"""A preprocessing pipeline for audio data.
This class is a preprocessing pipeline for audio data.
The pipeline includes resampling to a target sampling rate, mixing down stereo to mono,
and loading audio from a file.
:param target_sr: The target sampling rate to resample to.
:type target_sr: int
"""
def __init__(self, target_sr):
self.target_sr = target_sr
def __call__(self, path):
"""
Preprocess audio data using a pipeline.
:param path: The path to the audio file to load.
:type path: str
:return: A NumPy array of preprocessed audio data.
:rtype: numpy.ndarray
"""
signal, sr = torchaudio.load(path)
signal = self._resample(signal, sr)
signal = self._mix_down(signal)
return signal.numpy()
def _mix_down(self, signal):
"""
Mix down stereo to mono.
:param signal: The audio signal to mix down.
:type signal: torch.Tensor
:return: The mixed down audio signal.
:rtype: torch.Tensor
"""
if signal.shape[0] > 1:
signal = torch.mean(signal, dim=0, keepdim=True)
return signal
def _resample(self, signal, input_sr):
"""
Resample audio signal to a target sampling rate.
:param signal: The audio signal to resample.
:type signal: torch.Tensor
:param input_sr: The current sampling rate of the audio signal.
:type input_sr: int
:return: The resampled audio signal.
:rtype: torch.Tensor
"""
if input_sr != self.target_sr:
resampler = torchaudio.transforms.Resample(input_sr, self.target_sr)
signal = resampler(signal)
return signal
class SpecToImage(Transform):
def __init__(self, mean=None, std=None, eps=1e-6):
self.mean = mean
self.std = std
self.eps = eps
def __call__(self, spec):
spec = torch.stack([spec, spec, spec], dim=-1)
mean = torch.mean(spec) if self.mean is None else self.mean
std = torch.std(spec) if self.std is None else self.std
spec_norm = (spec - mean) / std
spec_min, spec_max = torch.min(spec_norm), torch.max(spec_norm)
spec_scaled = 255 * (spec_norm - spec_min) / (spec_max - spec_min)
return spec_scaled.type(torch.uint8)
class MinMaxScale(Transform):
def __call__(self, spec):
spec_min, spec_max = torch.min(spec), torch.max(spec)
return (spec - spec_min) / (spec_max - spec_min)
class Normalize(Transform):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, spec):
return (spec - self.mean) / self.std
class FeatureExtractor(Transform):
"""Extract features from audio signal using an AST feature extractor.
This class is a transform that extracts features from an audio signal using an AST feature extractor.
The features are returned as a PyTorch tensor.
:param sr: The sampling rate of the audio signal.
:type sr: int
"""
def __init__(self, sr):
self.transform = partial(ASTFeatureExtractor(), sampling_rate=sr, return_tensors="pt")
def __call__(self, signal):
"""
Extract features from audio signal using an AST feature extractor.
:param signal: The audio signal to extract features from.
:type signal: numpy.ndarray
:return: A tensor of extracted audio features.
:rtype: torch.Tensor
"""
return self.transform(signal.squeeze()).input_values.mT
class Preemphasis(Transform):
"""perform preemphasis on the input signal.
:param signal: The signal to filter.
:param coeff: The preemphasis coefficient. 0 is none, default 0.97.
:returns: the filtered signal.
"""
def __init__(self, coeff: float = 0.97):
self.coeff = coeff
def __call__(self, signal):
return torch.cat([signal[:, :1], signal[:, 1:] - self.coeff * signal[:, :-1]], dim=1)
class Spectrogram(Transform):
def __init__(self, sample_rate, n_mels, hop_length, n_fft):
self.transform = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate, n_mels=n_mels, hop_length=hop_length, n_fft=n_fft, f_min=20, center=False
)
def __call__(self, signal):
return self.transform(signal)
class LogTransform(Transform):
def __call__(self, signal):
return torch.log(signal + 1e-8)
class PadCutToLength(Transform):
def __init__(self, max_length):
self.max_length = max_length
def __call__(self, spec):
seq_len = spec.shape[-1]
if seq_len > self.max_length:
return spec[..., : self.max_length]
if seq_len < self.max_length:
diff = self.max_length - seq_len
return F.pad(spec, (0, diff), mode="constant", value=0)
class CustomFeatureExtractor(Transform):
def __init__(self, sample_rate, n_mels, hop_length, n_fft, max_length, mean, std):
self.extract = Compose(
[
Preemphasis(),
Spectrogram(sample_rate=sample_rate, n_mels=n_mels, hop_length=hop_length, n_fft=n_fft),
LogTransform(),
PadCutToLength(max_length=max_length),
Normalize(mean=mean, std=std),
]
)
def __call__(self, x):
return self.extract(x)
class RepeatAudio(Transform):
"""A transform to repeat audio data.
This class is a transform that repeats audio data a random number of times up to a maximum specified value.
:param max_repeats: The maximum number of times to repeat the audio data.
:type max_repeats: int
"""
def __init__(self, max_repeats: int = 2):
self.max_repeats = max_repeats
def __call__(self, signal):
"""
Repeat audio data a random number of times up to a maximum specified value.
:param signal: The audio data to repeat.
:type signal: numpy.ndarray
:return: The repeated audio data.
:rtype: numpy.ndarray
"""
num_repeats = torch.randint(1, self.max_repeats, (1,)).item()
return np.tile(signal, reps=num_repeats)
class MaskFrequency(Transform):
"""A transform to mask frequency of a spectrogram.
This class is a transform that masks out a random number of consecutive frequencies from a spectrogram.
:param max_mask_length: The maximum number of consecutive frequencies to mask out from the spectrogram.
:type max_mask_length: int
"""
def __init__(self, max_mask_length: int = 0):
self.aug = FrequencyMasking(max_mask_length)
def __call__(self, spec):
"""
Mask out a random number of consecutive frequencies from a spectrogram.
:param spec: The input spectrogram.
:type spec: numpy.ndarray
:return: The spectrogram with masked frequencies.
:rtype: numpy.ndarray
"""
return self.aug(spec)
class MaskTime(Transform):
"""A transform to mask time of a spectrogram.
This class is a transform that masks out a random number of consecutive time steps from a spectrogram.
:param max_mask_length: The maximum number of consecutive time steps to mask out from the spectrogram.
:type max_mask_length: int
"""
def __init__(self, max_mask_length: int = 0):
self.aug = TimeMasking(max_mask_length)
def __call__(self, spec):
"""
Mask out a random number of consecutive time steps from a spectrogram.
:param spec: The input spectrogram.
:type spec: numpy.ndarray
:return: The spectrogram with masked time steps.
:rtype: numpy.ndarray
"""
return self.aug(spec)