chat-with-phi / app.py
karimD2's picture
Update app.py
f32f32f
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-128k-instruct",
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
messages = [
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 256,
"return_full_text": False,
"temperature": 0.2,
"do_sample": True,
}
def phi3_fun(message,chat_history):
messages=[
{"role": "user", "content": message},
]
output = pipe(messages, **generation_args)
respond = output[0]['generated_text']
return respond
title = "Phi-3 "
examples = [
'How are You?',
"talk about your self",
]
gr.ChatInterface(
fn=phi3_fun,
title =title,
examples = examples
).launch(debug=True)
# demo = gr.Interface(fn=phi3_fun, inputs="text", outputs="text",title =title,
# examples = examples)
# demo.launch()
# output = pipe(messages, **generation_args)
# print(output[0]['generated_text'])