LangID-LIME / app_v1.py
kargaranamir's picture
add new app.
6dabd3f
raw
history blame
3.67 kB
# """
# Author: Amir Hossein Kargaran
# Date: August, 2023
# Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.
# MIT License
# Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980
# """
import gradio as gr
from io import BytesIO
from fasttext.FastText import _FastText
import re
import lime.lime_text
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from selenium import webdriver
from selenium.common.exceptions import WebDriverException
import os
# Load the FastText language identification model from Hugging Face Hub
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
# Create the FastText classifier
classifier = _FastText(model_path)
def remove_label_prefix(item):
return item.replace('__label__', '')
def remove_label_prefix_list(input_list):
if isinstance(input_list[0], list):
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
else:
return [remove_label_prefix(item) for item in input_list]
class_names = remove_label_prefix_list(classifier.labels)
class_names = np.sort(class_names)
num_class = len(class_names)
def tokenize_string(string):
return string.split()
explainer = lime.lime_text.LimeTextExplainer(
split_expression=tokenize_string,
bow=False,
class_names=class_names
)
def fasttext_prediction_in_sklearn_format(classifier, texts):
res = []
labels, probabilities = classifier.predict(texts, num_class)
labels = remove_label_prefix_list(labels)
for label, probs, text in zip(labels, probabilities, texts):
order = np.argsort(np.array(label))
res.append(probs[order])
return np.array(res)
def generate_explanation_html(input_sentence):
preprocessed_sentence = input_sentence
exp = explainer.explain_instance(
preprocessed_sentence,
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
top_labels=2,
num_features=20,
)
output_html_filename = "explanation.html"
exp.save_to_file(output_html_filename)
return output_html_filename
def take_screenshot(local_html_path):
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
try:
local_html_path = os.path.abspath(local_html_path)
wd = webdriver.Chrome(options=options)
wd.set_window_size(1366, 728)
wd.get('file://' + local_html_path)
wd.implicitly_wait(10)
screenshot = wd.get_screenshot_as_png()
except WebDriverException as e:
return Image.new('RGB', (1, 1))
finally:
if wd:
wd.quit()
return Image.open(BytesIO(screenshot))
def merge(input_sentence):
input_sentence = input_sentence.replace('\n', ' ')
output_html_filename = generate_explanation_html(input_sentence)
im = take_screenshot(output_html_filename)
return im, output_html_filename
input_sentence = gr.inputs.Textbox(label="Input Sentence")
output_explanation = gr.outputs.File(label="Explanation HTML")
iface = gr.Interface(
fn=merge,
inputs=input_sentence,
outputs=[gr.Image(type="pil", height=364, width=683, label = "Explanation Image"), output_explanation],
title="LIME LID",
description="This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.",
allow_flagging='never'
)
iface.launch()