Spaces:
Sleeping
Sleeping
pax-dare-lab
commited on
Commit
β’
fb119fe
1
Parent(s):
c6d01f1
Use GPT2 Model
Browse files- .streamlit/secrets.toml +6 -0
- app.py +58 -0
- app_hugchat.py +55 -0
- login_test.py +5 -0
- requirements.txt +1 -1
.streamlit/secrets.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor="#F63366"
|
3 |
+
backgroundColor="#FFFFFF"
|
4 |
+
secondaryBackgroundColor="#F0F2F6"
|
5 |
+
textColor="#262730"
|
6 |
+
font="sans serif"
|
app.py
CHANGED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
# from transformers import T5Tokenizer,AutoModelForCausalLM
|
3 |
+
|
4 |
+
model_name = "rinna/japanese-gpt2-small"
|
5 |
+
|
6 |
+
# tokenizer = T5Tokenizer.from_pretrained(model_name)
|
7 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
+
|
12 |
+
# Load the pre-trained GPT-2 model and tokenizer
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
16 |
+
|
17 |
+
# App title
|
18 |
+
st.set_page_config(page_title="ChatBot")
|
19 |
+
|
20 |
+
if "messages" not in st.session_state.keys():
|
21 |
+
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
22 |
+
|
23 |
+
# Display chat messages
|
24 |
+
for message in st.session_state.messages:
|
25 |
+
with st.chat_message(message["role"]):
|
26 |
+
st.write(message["content"])
|
27 |
+
|
28 |
+
# Function for generating LLM response
|
29 |
+
# def generate_response(prompt_input):
|
30 |
+
# input = tokenizer.encode(prompt_input, return_tensors="pt")
|
31 |
+
# output = model.generate(input, do_sample=True, max_length=30, num_return_sequences=1)
|
32 |
+
|
33 |
+
# return tokenizer.batch_decode(output)
|
34 |
+
|
35 |
+
def generate_response(prompt, max_length=50):
|
36 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
37 |
+
|
38 |
+
# Generate response
|
39 |
+
with torch.no_grad():
|
40 |
+
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1, pad_token_id=50256)
|
41 |
+
|
42 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
+
return response
|
44 |
+
|
45 |
+
# User-provided prompt
|
46 |
+
if prompt := st.chat_input():
|
47 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
48 |
+
with st.chat_message("user"):
|
49 |
+
st.write(prompt)
|
50 |
+
|
51 |
+
# Generate a new response if last message is not from assistant
|
52 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
53 |
+
with st.chat_message("assistant"):
|
54 |
+
with st.spinner("Thinking..."):
|
55 |
+
response = generate_response(prompt)
|
56 |
+
st.write(response)
|
57 |
+
message = {"role": "assistant", "content": response}
|
58 |
+
st.session_state.messages.append(message)
|
app_hugchat.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from hugchat import hugchat
|
3 |
+
from hugchat.login import Login
|
4 |
+
|
5 |
+
# App title
|
6 |
+
st.set_page_config(page_title="π€π¬ HugChat")
|
7 |
+
|
8 |
+
# Hugging Face Credentials
|
9 |
+
with st.sidebar:
|
10 |
+
st.title('π€π¬ HugChat')
|
11 |
+
if ('EMAIL' in st.secrets) and ('PASS' in st.secrets):
|
12 |
+
st.success('HuggingFace Login credentials already provided!', icon='β
')
|
13 |
+
hf_email = st.secrets['EMAIL']
|
14 |
+
hf_pass = st.secrets['PASS']
|
15 |
+
else:
|
16 |
+
hf_email = st.text_input('Enter E-mail:', type='password')
|
17 |
+
hf_pass = st.text_input('Enter password:', type='password')
|
18 |
+
if not (hf_email and hf_pass):
|
19 |
+
st.warning('Please enter your credentials!', icon='β οΈ')
|
20 |
+
else:
|
21 |
+
st.success('Proceed to entering your prompt message!', icon='π')
|
22 |
+
st.markdown('π Learn how to build this app in this [blog](https://blog.streamlit.io/how-to-build-an-llm-powered-chatbot-with-streamlit/)!')
|
23 |
+
|
24 |
+
# Store LLM generated responses
|
25 |
+
if "messages" not in st.session_state.keys():
|
26 |
+
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
27 |
+
|
28 |
+
# Display chat messages
|
29 |
+
for message in st.session_state.messages:
|
30 |
+
with st.chat_message(message["role"]):
|
31 |
+
st.write(message["content"])
|
32 |
+
|
33 |
+
# Function for generating LLM response
|
34 |
+
def generate_response(prompt_input, email, passwd):
|
35 |
+
# Hugging Face Login
|
36 |
+
sign = Login(email, passwd)
|
37 |
+
cookies = sign.login()
|
38 |
+
# Create ChatBot
|
39 |
+
chatbot = hugchat.ChatBot(cookies=cookies.get_dict())
|
40 |
+
return chatbot.chat(prompt_input)
|
41 |
+
|
42 |
+
# User-provided prompt
|
43 |
+
if prompt := st.chat_input(disabled=not (hf_email and hf_pass)):
|
44 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
45 |
+
with st.chat_message("user"):
|
46 |
+
st.write(prompt)
|
47 |
+
|
48 |
+
# Generate a new response if last message is not from assistant
|
49 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
50 |
+
with st.chat_message("assistant"):
|
51 |
+
with st.spinner("Thinking..."):
|
52 |
+
response = generate_response(prompt, hf_email, hf_pass)
|
53 |
+
st.write(response)
|
54 |
+
message = {"role": "assistant", "content": response}
|
55 |
+
st.session_state.messages.append(message)
|
login_test.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from hugchat import hugchat
|
2 |
+
from hugchat.login import Login
|
3 |
+
|
4 |
+
sign = Login("pax.dare@gmail.com", "SASuse57343983")
|
5 |
+
cookies = sign.login()
|
requirements.txt
CHANGED
@@ -4,4 +4,4 @@ transformers
|
|
4 |
langchain
|
5 |
Cython
|
6 |
torch
|
7 |
-
hugchat
|
|
|
4 |
langchain
|
5 |
Cython
|
6 |
torch
|
7 |
+
hugchat==0.4.4
|