Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torchvision.models as models | |
class EncoderCNN(nn.Module): | |
def __init__(self,embed_size): | |
super(EncoderCNN, self).__init__() | |
resnet = models.resnet50(weights='ResNet50_Weights.DEFAULT') | |
for param in resnet.parameters(): | |
param.requires_grad_(False) | |
modules = list(resnet.children())[:-1] | |
self.resnet = nn.Sequential(*modules) | |
self.embed = nn.Linear(resnet.fc.in_features, embed_size) | |
self.batch= nn.BatchNorm1d(embed_size,momentum = 0.01) | |
self.embed.weight.data.normal_(0., 0.02) | |
self.embed.bias.data.fill_(0) | |
def forward(self,images): | |
features = self.resnet(images) | |
features = features.view(features.size(0), -1) | |
features = self.batch(self.embed(features)) | |
return features | |
class DecoderRNN(nn.Module): | |
def __init__(self,embed_size,hidden_size,vocab_size,num_layers): | |
super(DecoderRNN, self).__init__() | |
self.embed=nn.Embedding(vocab_size,embed_size) | |
self.lstm=nn.LSTM(embed_size,hidden_size,num_layers) | |
self.linear=nn.Linear(hidden_size,vocab_size) | |
self.dropout=nn.Dropout(0.5) | |
def forward(self,features,captions): | |
embeddings=self.dropout(self.embed(captions)) | |
embeddings=torch.cat((features.unsqueeze(0),embeddings),dim=0) | |
hiddens,_=self.lstm(embeddings) | |
outputs=self.linear(hiddens) | |
return outputs | |
class CNNtoRNN(nn.Module): | |
def __init__(self,embed_size,hidden_size,vocab_size,num_layers): | |
super(CNNtoRNN,self).__init__() | |
self.encoderCNN=EncoderCNN(embed_size) | |
self.decoderRNN=DecoderRNN(embed_size,hidden_size,vocab_size,num_layers) | |
def forward(self,images,captions): | |
features=self.encoderCNN(images) | |
outputs=self.decoderRNN(features,captions) | |
return outputs | |
def caption_image(self,image,vocabulary,max_length=50): | |
result_caption=[] | |
with torch.no_grad(): | |
X=self.encoderCNN(image).unsqueeze(0) | |
states=None | |
for _ in range(max_length): | |
hiddens,states=self.decoderRNN.lstm(X,states) | |
output=self.decoderRNN.linear(hiddens.squeeze(0)) | |
predicted=output.argmax(1) | |
result_caption.append(predicted.item()) | |
X=self.decoderRNN.embed(predicted).unsqueeze(0) | |
if vocabulary.itos[predicted.item()]=="<EOS>": | |
break | |
return [vocabulary.itos[idx] for idx in result_caption] | |