Rustamshry commited on
Commit
be81b08
Β·
verified Β·
1 Parent(s): 625b49e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +138 -65
app.py CHANGED
@@ -1,70 +1,143 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
 
 
 
68
 
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ from peft import PeftModel
4
+ import torch
5
+
6
+ # --- Load tokenizer and model for CPU ---
7
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-0.5B-Instruct")
8
+
9
+ base_model = AutoModelForCausalLM.from_pretrained(
10
+ "unsloth/Qwen2.5-0.5B-Instruct",
11
+ dtype=torch.float32,
12
+ device_map={"": "cpu"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  )
14
 
15
+ model = PeftModel.from_pretrained(base_model, "khazarai/SympQwen-0.5B").to("cpu")
16
+
17
+ # --- Chatbot logic ---
18
+ def generate_response(user_input, chat_history):
19
+ if not user_input.strip():
20
+ return chat_history, chat_history
21
+
22
+ chat_history.append({"role": "user", "content": user_input})
23
+
24
+ text = tokenizer.apply_chat_template(
25
+ chat_history,
26
+ tokenize=False,
27
+ add_generation_prompt=True,
28
+ #enable_thinking=False,
29
+ )
30
+
31
+ inputs = tokenizer(text, return_tensors="pt").to("cpu")
32
+
33
+ output_tokens = model.generate(
34
+ **inputs,
35
+ max_new_tokens=512,
36
+ #temperature=0.7,
37
+ #top_p=0.8,
38
+ #top_k=20,
39
+ do_sample=True
40
+ )
41
+
42
+ response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
43
+ response = response.split(user_input)[-1].strip()
44
+
45
+ chat_history.append({"role": "assistant", "content": response})
46
+
47
+ gr_chat_history = [
48
+ (m["content"], chat_history[i + 1]["content"])
49
+ for i, m in enumerate(chat_history[:-1])
50
+ if m["role"] == "user"
51
+ ]
52
+
53
+ return gr_chat_history, chat_history
54
+
55
+
56
+ # --- Advanced UI Design ---
57
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="slate")) as demo:
58
+ gr.HTML("""
59
+ <style>
60
+ body {
61
+ background: radial-gradient(circle at top, #DBEAFE 0%, #EFF6FF 100%);
62
+ }
63
+ .gradio-container {
64
+ font-family: 'Inter', sans-serif;
65
+ }
66
+ .chat-header {
67
+ text-align: center;
68
+ background: linear-gradient(90deg, #60A5FA, #3B82F6);
69
+ color: white;
70
+ padding: 20px 10px;
71
+ border-radius: 18px;
72
+ margin-bottom: 20px;
73
+ box-shadow: 0px 4px 20px rgba(59,130,246,0.3);
74
+ }
75
+ .chat-header h1 {
76
+ font-size: 2.4em;
77
+ font-weight: 800;
78
+ margin-bottom: 0px;
79
+ }
80
+ .chat-header p {
81
+ margin-top: 5px;
82
+ color: #DBEAFE;
83
+ font-weight: 500;
84
+ }
85
+ .send-btn {
86
+ background: linear-gradient(90deg, #60A5FA, #3B82F6);
87
+ color: white !important;
88
+ transition: all 0.25s ease-in-out;
89
+ }
90
+ .send-btn:hover {
91
+ transform: scale(1.05);
92
+ box-shadow: 0 0 12px rgba(96,165,250,0.5);
93
+ }
94
+ .textbox {
95
+ backdrop-filter: blur(12px);
96
+ background-color: rgba(255,255,255,0.6);
97
+ border-radius: 16px !important;
98
+ }
99
+ .footer {
100
+ text-align: center;
101
+ margin-top: 25px;
102
+ color: #6B7280;
103
+ font-size: 0.9em;
104
+ }
105
+ </style>
106
+
107
+ <div class="chat-header">
108
+ <h1> 🧠 Azerbaijani Chatbot</h1>
109
+ </div>
110
+ """)
111
+
112
+ with gr.Row():
113
+ with gr.Column(scale=6):
114
+ chatbot = gr.Chatbot(
115
+ label="πŸ’¬ Chat-Az",
116
+ height=600,
117
+ bubble_full_width=True,
118
+ show_copy_button=True,
119
+ avatar_images=(
120
+ "https://cdn-icons-png.flaticon.com/512/1077/1077012.png", # user
121
+ "https://cdn-icons-png.flaticon.com/512/4140/4140048.png", # bot
122
+ ),
123
+ )
124
+
125
+ user_input = gr.Textbox(
126
+ placeholder="Ask about..",
127
+ label="Type your question",
128
+ lines=3,
129
+ elem_classes=["textbox"],
130
+ autofocus=True,
131
+ )
132
+
133
+ with gr.Row():
134
+ send_btn = gr.Button("πŸš€ Send", variant="primary", elem_classes=["send-btn"])
135
+ clear_btn = gr.Button("🧹 Clear Chat")
136
+
137
+ state = gr.State([])
138
 
139
+ send_btn.click(generate_response, [user_input, state], [chatbot, state])
140
+ user_input.submit(generate_response, [user_input, state], [chatbot, state])
141
+ clear_btn.click(lambda: ([], []), None, [chatbot, state])
142
 
143
+ demo.launch(share=True)