kamran-r123's picture
Update main.py
eece387 verified
raw
history blame
3.15 kB
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn
import prompt_style
import os
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import time
# model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3-GGUF"
# filename="Meta-Llama-3-8B-Instruct-abliterated-v3_q6.gguf"
# model_path = hf_hub_download(repo_id=model_id, filename="Meta-Llama-3-8B-Instruct-abliterated-v3_q6.gguf", token=os.environ['HF_TOKEN'])
# model = Llama(model_path=model_path, n_gpu_layers=-1, n_ctx=4096, verbose=False)
# model = Llama.from_pretrained(repo_id=model_id, filename=filename, n_gpu_layers=-1, token=os.environ['HF_TOKEN'],
# n_ctx=4096, verbose=False, attn_implementation="flash_attention_2")
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3"
model_8bit = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True),
token=os.environ['HF_TOKEN'], attn_implementation="flash_attention_2")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 1024
top_p: float = 0.95
repetition_penalty: float = 1.0
seed : int = 42
app = FastAPI()
def format_prompt(item: Item):
messages = [
{"role": "system", "content": prompt_style.data},
]
for it in item.history:
messages.append({"role" : "user", "content": it[0]})
messages.append({"role" : "assistant", "content": it[1]})
messages.append({"role" : "user", "content": item.prompt})
return messages
def generate(item: Item):
formatted_prompt = format_prompt(item)
# output = model.create_chat_completion(messages=formatted_prompt, seed=item.seed,
# temperature=item.temperature, max_tokens=item.max_new_tokens)
# out = output['choices'][0]['message']['content']
# return out
input_ids = tokenizer.apply_chat_template(
formatted_prompt,
add_generation_prompt=True,
return_tensors="pt"
).to("cuda")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model_8bit.generate(
input_ids,
max_new_tokens=item.max_new_tokens,
eos_token_id=terminators,
do_sample=True,
temperature=item.temperature,
top_p=item.top_p,
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
# generated_ids = model.generate(**inputs)
# outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
@app.post("/generate/")
async def generate_text(item: Item):
t1 = time.time()
ans = generate(item)
print(ans)
print(f"time: {str(time.time() - t1)}")
return {"response": ans}
@app.get("/")
def read_root():
return {"Hello": "Worlds"}