Spaces:
Sleeping
Sleeping
BatuhanYilmaz
commited on
Commit
•
613b97e
1
Parent(s):
480e8fe
- .gitattributes +0 -31
- .streamlit/config.toml +8 -0
- app.py → 01_🎥_Input_YouTube_Link.py +14 -15
- LICENSE +21 -0
- README.md +21 -12
- pages +0 -0
- pages/02_📼_Upload_Video_File.py +230 -0
- pages/03_🔊_Upload_Audio_File.py +205 -0
.gitattributes
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.streamlit/config.toml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor="#F63366"
|
3 |
+
backgroundColor="#FFFFFF"
|
4 |
+
secondaryBackgroundColor="#F0F2F6"
|
5 |
+
textColor="#262730"
|
6 |
+
font="sans serif"
|
7 |
+
[server]
|
8 |
+
maxUploadSize=1028
|
app.py → 01_🎥_Input_YouTube_Link.py
RENAMED
@@ -75,7 +75,7 @@ def change_model(current_size, size):
|
|
75 |
@st.cache(allow_output_mutation=True)
|
76 |
def inference(link, loaded_model, task):
|
77 |
yt = YouTube(link)
|
78 |
-
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.
|
79 |
if task == "Transcribe":
|
80 |
options = dict(task="transcribe", best_of=5)
|
81 |
results = loaded_model.transcribe(path, **options)
|
@@ -153,18 +153,18 @@ def main():
|
|
153 |
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
154 |
datatxt = f.read()
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
datavtt = f.read()
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
168 |
with col5:
|
169 |
st.download_button(label="Download Transcript (.txt)",
|
170 |
data=datatxt,
|
@@ -184,7 +184,7 @@ def main():
|
|
184 |
|
185 |
with col4:
|
186 |
with st.spinner("Generating Subtitled Video"):
|
187 |
-
video_with_subs = generate_subtitled_video(video, "audio.
|
188 |
st.video(video_with_subs)
|
189 |
st.balloons()
|
190 |
with col8:
|
@@ -212,7 +212,6 @@ def main():
|
|
212 |
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
213 |
datatxt = f.read()
|
214 |
|
215 |
-
|
216 |
with open("transcript.vtt", "w+",encoding='utf8') as f:
|
217 |
f.writelines(results[1])
|
218 |
f.close()
|
@@ -243,7 +242,7 @@ def main():
|
|
243 |
|
244 |
with col4:
|
245 |
with st.spinner("Generating Subtitled Video"):
|
246 |
-
video_with_subs = generate_subtitled_video(video, "audio.
|
247 |
st.video(video_with_subs)
|
248 |
st.balloons()
|
249 |
with col8:
|
|
|
75 |
@st.cache(allow_output_mutation=True)
|
76 |
def inference(link, loaded_model, task):
|
77 |
yt = YouTube(link)
|
78 |
+
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp3")
|
79 |
if task == "Transcribe":
|
80 |
options = dict(task="transcribe", best_of=5)
|
81 |
results = loaded_model.transcribe(path, **options)
|
|
|
153 |
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
154 |
datatxt = f.read()
|
155 |
|
156 |
+
with open("transcript.vtt", "w+",encoding='utf8') as f:
|
157 |
+
f.writelines(results[1])
|
158 |
+
f.close()
|
159 |
+
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
|
160 |
+
datavtt = f.read()
|
|
|
161 |
|
162 |
+
with open("transcript.srt", "w+",encoding='utf8') as f:
|
163 |
+
f.writelines(results[2])
|
164 |
+
f.close()
|
165 |
+
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
|
166 |
+
datasrt = f.read()
|
167 |
+
|
168 |
with col5:
|
169 |
st.download_button(label="Download Transcript (.txt)",
|
170 |
data=datatxt,
|
|
|
184 |
|
185 |
with col4:
|
186 |
with st.spinner("Generating Subtitled Video"):
|
187 |
+
video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt")
|
188 |
st.video(video_with_subs)
|
189 |
st.balloons()
|
190 |
with col8:
|
|
|
212 |
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
213 |
datatxt = f.read()
|
214 |
|
|
|
215 |
with open("transcript.vtt", "w+",encoding='utf8') as f:
|
216 |
f.writelines(results[1])
|
217 |
f.close()
|
|
|
242 |
|
243 |
with col4:
|
244 |
with st.spinner("Generating Subtitled Video"):
|
245 |
+
video_with_subs = generate_subtitled_video(video, "audio.mp3", "transcript.srt")
|
246 |
st.video(video_with_subs)
|
247 |
st.balloons()
|
248 |
with col8:
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Batuhan Yılmaz
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
-
|
2 |
-
title: Auto Subtitled Video Generator
|
3 |
-
emoji: 📚
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: blue
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.10.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Auto-Subtitled-Video-Generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
![Python](https://img.shields.io/badge/Python-FFD43B?style=for-the-badge&logo=python&logoColor=blue)
|
4 |
+
![Streamlit](https://img.shields.io/badge/Streamlit-FF4B4B?style=for-the-badge&logo=Streamlit&logoColor=white)
|
5 |
+
![OpenAI](https://camo.githubusercontent.com/ea872adb9aba9cf6b4e976262f6d4b83b97972d0d5a7abccfde68eb2ae55325f/68747470733a2f2f696d672e736869656c64732e696f2f7374617469632f76313f7374796c653d666f722d7468652d6261646765266d6573736167653d4f70656e414926636f6c6f723d343132393931266c6f676f3d4f70656e4149266c6f676f436f6c6f723d464646464646266c6162656c3d)
|
6 |
+
|
7 |
+
#### About this project
|
8 |
+
- This project is an automatic speech recognition application that takes a YouTube video link or a video file as input to generate a video with subtitles.
|
9 |
+
- You can also upload an audio file to generate a transcript as .txt, .vtt, .srt files.
|
10 |
+
- The application performs 2 tasks:
|
11 |
+
- Detects the language, transcribes the input video in its original language.
|
12 |
+
- Detects the language, translates it into English and then transcribes.
|
13 |
+
- Downloaded the video of the input link using [pytube](https://github.com/pytube/pytube).
|
14 |
+
- Generated a transcription of the video using the [OpenAI Whisper](https://openai.com/blog/whisper) model.
|
15 |
+
- Saved the transcriptions as .txt, .vtt and .srt files.
|
16 |
+
- Generated a subtitled version of the input video using [ffmpeg](https://github.com/FFmpeg).
|
17 |
+
- Displayed the original video and the subtitled video side by side.
|
18 |
+
- Built a multipage web app using [Streamlit](https://streamlit.io) and hosted on [HuggingFace Spaces](https://huggingface.co/spaces).
|
19 |
+
- You can download the generated .txt, .vtt, .srt files and the subtitled video.
|
20 |
+
- You can use the app via this [link](https://huggingface.co/spaces/BatuhanYilmaz/Auto-Subtitled-Video-Generator).
|
21 |
+
|
22 |
+
![](auto-sub.gif)
|
pages
DELETED
File without changes
|
pages/02_📼_Upload_Video_File.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_lottie import st_lottie
|
4 |
+
from utils import write_vtt, write_srt
|
5 |
+
import ffmpeg
|
6 |
+
import requests
|
7 |
+
from typing import Iterator
|
8 |
+
from io import StringIO
|
9 |
+
import numpy as np
|
10 |
+
import pathlib
|
11 |
+
import os
|
12 |
+
|
13 |
+
st.set_page_config(page_title="Auto Subtitled Video Generator", page_icon=":movie_camera:", layout="wide")
|
14 |
+
|
15 |
+
# Define a function that we can use to load lottie files from a link.
|
16 |
+
@st.cache(allow_output_mutation=True)
|
17 |
+
def load_lottieurl(url: str):
|
18 |
+
r = requests.get(url)
|
19 |
+
if r.status_code != 200:
|
20 |
+
return None
|
21 |
+
return r.json()
|
22 |
+
|
23 |
+
|
24 |
+
APP_DIR = pathlib.Path(__file__).parent.absolute()
|
25 |
+
|
26 |
+
LOCAL_DIR = APP_DIR / "local"
|
27 |
+
LOCAL_DIR.mkdir(exist_ok=True)
|
28 |
+
save_dir = LOCAL_DIR / "output"
|
29 |
+
save_dir.mkdir(exist_ok=True)
|
30 |
+
|
31 |
+
|
32 |
+
loaded_model = whisper.load_model("base")
|
33 |
+
current_size = "None"
|
34 |
+
|
35 |
+
|
36 |
+
col1, col2 = st.columns([1, 3])
|
37 |
+
with col1:
|
38 |
+
lottie = load_lottieurl("https://assets1.lottiefiles.com/packages/lf20_HjK9Ol.json")
|
39 |
+
st_lottie(lottie, speed=1, height=250, width=250)
|
40 |
+
|
41 |
+
with col2:
|
42 |
+
st.write("""
|
43 |
+
## Auto Subtitled Video Generator
|
44 |
+
##### Upload a video file and get a video with subtitles.
|
45 |
+
###### ➠ If you want to transcribe the video in its original language, select the task as "Transcribe"
|
46 |
+
###### ➠ If you want to translate the subtitles to English, select the task as "Translate"
|
47 |
+
###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """)
|
48 |
+
|
49 |
+
|
50 |
+
@st.cache(allow_output_mutation=True)
|
51 |
+
def change_model(current_size, size):
|
52 |
+
if current_size != size:
|
53 |
+
loaded_model = whisper.load_model(size)
|
54 |
+
return loaded_model
|
55 |
+
else:
|
56 |
+
raise Exception("Model size is the same as the current size.")
|
57 |
+
|
58 |
+
|
59 |
+
@st.cache(allow_output_mutation=True)
|
60 |
+
def inferecence(loaded_model, uploaded_file, task):
|
61 |
+
with open(f"{save_dir}/input.mp4", "wb") as f:
|
62 |
+
f.write(uploaded_file.read())
|
63 |
+
audio = ffmpeg.input(f"{save_dir}/input.mp4")
|
64 |
+
audio = ffmpeg.output(audio, f"{save_dir}/output.wav", acodec="pcm_s16le", ac=1, ar="16k")
|
65 |
+
ffmpeg.run(audio, overwrite_output=True)
|
66 |
+
if task == "Transcribe":
|
67 |
+
options = dict(task="transcribe", best_of=5)
|
68 |
+
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
|
69 |
+
vtt = getSubs(results["segments"], "vtt", 80)
|
70 |
+
srt = getSubs(results["segments"], "srt", 80)
|
71 |
+
lang = results["language"]
|
72 |
+
return results["text"], vtt, srt, lang
|
73 |
+
elif task == "Translate":
|
74 |
+
options = dict(task="translate", best_of=5)
|
75 |
+
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
|
76 |
+
vtt = getSubs(results["segments"], "vtt", 80)
|
77 |
+
srt = getSubs(results["segments"], "srt", 80)
|
78 |
+
lang = results["language"]
|
79 |
+
return results["text"], vtt, srt, lang
|
80 |
+
else:
|
81 |
+
raise ValueError("Task not supported")
|
82 |
+
|
83 |
+
|
84 |
+
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
|
85 |
+
segmentStream = StringIO()
|
86 |
+
|
87 |
+
if format == 'vtt':
|
88 |
+
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
|
89 |
+
elif format == 'srt':
|
90 |
+
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
|
91 |
+
else:
|
92 |
+
raise Exception("Unknown format " + format)
|
93 |
+
|
94 |
+
segmentStream.seek(0)
|
95 |
+
return segmentStream.read()
|
96 |
+
|
97 |
+
|
98 |
+
def generate_subtitled_video(video, audio, transcript):
|
99 |
+
video_file = ffmpeg.input(video)
|
100 |
+
audio_file = ffmpeg.input(audio)
|
101 |
+
ffmpeg.concat(video_file.filter("subtitles", transcript), audio_file, v=1, a=1).output("final.mp4").run(quiet=True, overwrite_output=True)
|
102 |
+
video_with_subs = open("final.mp4", "rb")
|
103 |
+
return video_with_subs
|
104 |
+
|
105 |
+
|
106 |
+
def main():
|
107 |
+
size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large"], index=1)
|
108 |
+
loaded_model = change_model(current_size, size)
|
109 |
+
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
|
110 |
+
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
|
111 |
+
input_file = st.file_uploader("File", type=["mp4", "avi", "mov", "mkv"])
|
112 |
+
# get the name of the input_file
|
113 |
+
if input_file is not None:
|
114 |
+
filename = input_file.name[:-4]
|
115 |
+
else:
|
116 |
+
filename = None
|
117 |
+
task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0)
|
118 |
+
if task == "Transcribe":
|
119 |
+
if st.button("Transcribe"):
|
120 |
+
results = inferecence(loaded_model, input_file, task)
|
121 |
+
col3, col4 = st.columns(2)
|
122 |
+
col5, col6, col7, col8 = st.columns(4)
|
123 |
+
col9, col10 = st.columns(2)
|
124 |
+
with col3:
|
125 |
+
st.video(input_file)
|
126 |
+
|
127 |
+
with open("transcript.txt", "w+", encoding='utf8') as f:
|
128 |
+
f.writelines(results[0])
|
129 |
+
f.close()
|
130 |
+
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
131 |
+
datatxt = f.read()
|
132 |
+
|
133 |
+
with open("transcript.vtt", "w+",encoding='utf8') as f:
|
134 |
+
f.writelines(results[1])
|
135 |
+
f.close()
|
136 |
+
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
|
137 |
+
datavtt = f.read()
|
138 |
+
|
139 |
+
with open("transcript.srt", "w+",encoding='utf8') as f:
|
140 |
+
f.writelines(results[2])
|
141 |
+
f.close()
|
142 |
+
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
|
143 |
+
datasrt = f.read()
|
144 |
+
|
145 |
+
with col5:
|
146 |
+
st.download_button(label="Download Transcript (.txt)",
|
147 |
+
data=datatxt,
|
148 |
+
file_name="transcript.txt")
|
149 |
+
with col6:
|
150 |
+
st.download_button(label="Download Transcript (.vtt)",
|
151 |
+
data=datavtt,
|
152 |
+
file_name="transcript.vtt")
|
153 |
+
with col7:
|
154 |
+
st.download_button(label="Download Transcript (.srt)",
|
155 |
+
data=datasrt,
|
156 |
+
file_name="transcript.srt")
|
157 |
+
with col9:
|
158 |
+
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
|
159 |
+
with col10:
|
160 |
+
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
|
161 |
+
|
162 |
+
with col4:
|
163 |
+
with st.spinner("Generating Subtitled Video"):
|
164 |
+
video_with_subs = generate_subtitled_video(f"{save_dir}/input.mp4", f"{save_dir}/output.wav", "transcript.srt")
|
165 |
+
st.video(video_with_subs)
|
166 |
+
st.snow()
|
167 |
+
with col8:
|
168 |
+
st.download_button(label="Download Video with Subtitles",
|
169 |
+
data=video_with_subs,
|
170 |
+
file_name=f"{filename}_with_subs.mp4")
|
171 |
+
elif task == "Translate":
|
172 |
+
if st.button("Translate to English"):
|
173 |
+
results = inferecence(loaded_model, input_file, task)
|
174 |
+
col3, col4 = st.columns(2)
|
175 |
+
col5, col6, col7, col8 = st.columns(4)
|
176 |
+
col9, col10 = st.columns(2)
|
177 |
+
with col3:
|
178 |
+
st.video(input_file)
|
179 |
+
|
180 |
+
with open("transcript.txt", "w+", encoding='utf8') as f:
|
181 |
+
f.writelines(results[0])
|
182 |
+
f.close()
|
183 |
+
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
184 |
+
datatxt = f.read()
|
185 |
+
|
186 |
+
with open("transcript.vtt", "w+",encoding='utf8') as f:
|
187 |
+
f.writelines(results[1])
|
188 |
+
f.close()
|
189 |
+
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
|
190 |
+
datavtt = f.read()
|
191 |
+
|
192 |
+
with open("transcript.srt", "w+",encoding='utf8') as f:
|
193 |
+
f.writelines(results[2])
|
194 |
+
f.close()
|
195 |
+
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
|
196 |
+
datasrt = f.read()
|
197 |
+
|
198 |
+
with col5:
|
199 |
+
st.download_button(label="Download Transcript (.txt)",
|
200 |
+
data=datatxt,
|
201 |
+
file_name="transcript.txt")
|
202 |
+
with col6:
|
203 |
+
st.download_button(label="Download Transcript (.vtt)",
|
204 |
+
data=datavtt,
|
205 |
+
file_name="transcript.vtt")
|
206 |
+
with col7:
|
207 |
+
st.download_button(label="Download Transcript (.srt)",
|
208 |
+
data=datasrt,
|
209 |
+
file_name="transcript.srt")
|
210 |
+
with col9:
|
211 |
+
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
|
212 |
+
with col10:
|
213 |
+
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
|
214 |
+
|
215 |
+
with col4:
|
216 |
+
with st.spinner("Generating Subtitled Video"):
|
217 |
+
video_with_subs = generate_subtitled_video(f"{save_dir}/input.mp4", f"{save_dir}/output.wav", "transcript.srt")
|
218 |
+
st.video(video_with_subs)
|
219 |
+
st.snow()
|
220 |
+
with col8:
|
221 |
+
st.download_button(label="Download Video with Subtitles",
|
222 |
+
data=video_with_subs,
|
223 |
+
file_name=f"{filename}_with_subs.mp4")
|
224 |
+
else:
|
225 |
+
st.error("Please select a task.")
|
226 |
+
|
227 |
+
|
228 |
+
if __name__ == "__main__":
|
229 |
+
main()
|
230 |
+
st.markdown("###### Made with :heart: by [@BatuhanYılmaz](https://twitter.com/batuhan3326) [![this is an image link](https://i.imgur.com/thJhzOO.png)](https://www.buymeacoffee.com/batuhanylmz)")
|
pages/03_🔊_Upload_Audio_File.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_lottie import st_lottie
|
4 |
+
from utils import write_vtt, write_srt
|
5 |
+
import ffmpeg
|
6 |
+
import requests
|
7 |
+
from typing import Iterator
|
8 |
+
from io import StringIO
|
9 |
+
import numpy as np
|
10 |
+
import pathlib
|
11 |
+
import os
|
12 |
+
|
13 |
+
st.set_page_config(page_title="Auto Transcriber", page_icon="🔊", layout="wide")
|
14 |
+
|
15 |
+
# Define a function that we can use to load lottie files from a link.
|
16 |
+
@st.cache(allow_output_mutation=True)
|
17 |
+
def load_lottieurl(url: str):
|
18 |
+
r = requests.get(url)
|
19 |
+
if r.status_code != 200:
|
20 |
+
return None
|
21 |
+
return r.json()
|
22 |
+
|
23 |
+
|
24 |
+
APP_DIR = pathlib.Path(__file__).parent.absolute()
|
25 |
+
|
26 |
+
LOCAL_DIR = APP_DIR / "local_audio"
|
27 |
+
LOCAL_DIR.mkdir(exist_ok=True)
|
28 |
+
save_dir = LOCAL_DIR / "output"
|
29 |
+
save_dir.mkdir(exist_ok=True)
|
30 |
+
|
31 |
+
|
32 |
+
col1, col2 = st.columns([1, 3])
|
33 |
+
with col1:
|
34 |
+
lottie = load_lottieurl("https://assets1.lottiefiles.com/packages/lf20_1xbk4d2v.json")
|
35 |
+
st_lottie(lottie, speed=1, height=250, width=250)
|
36 |
+
|
37 |
+
with col2:
|
38 |
+
st.write("""
|
39 |
+
## Auto Transcriber
|
40 |
+
##### Input an audio file and get a transcript.
|
41 |
+
###### ➠ If you want to transcribe the audio in its original language, select the task as "Transcribe"
|
42 |
+
###### ➠ If you want to translate the transcription to English, select the task as "Translate"
|
43 |
+
###### I recommend starting with the base model and then experimenting with the larger models, the small and medium models often work well. """)
|
44 |
+
|
45 |
+
loaded_model = whisper.load_model("base")
|
46 |
+
current_size = "None"
|
47 |
+
|
48 |
+
|
49 |
+
@st.cache(allow_output_mutation=True)
|
50 |
+
def change_model(current_size, size):
|
51 |
+
if current_size != size:
|
52 |
+
loaded_model = whisper.load_model(size)
|
53 |
+
return loaded_model
|
54 |
+
else:
|
55 |
+
raise Exception("Model size is the same as the current size.")
|
56 |
+
|
57 |
+
@st.cache(allow_output_mutation=True)
|
58 |
+
def inferecence(loaded_model, uploaded_file, task):
|
59 |
+
with open(f"{save_dir}/input.mp3", "wb") as f:
|
60 |
+
f.write(uploaded_file.read())
|
61 |
+
audio = ffmpeg.input(f"{save_dir}/input.mp3")
|
62 |
+
audio = ffmpeg.output(audio, f"{save_dir}/output.wav", acodec="pcm_s16le", ac=1, ar="16k")
|
63 |
+
ffmpeg.run(audio, overwrite_output=True)
|
64 |
+
if task == "Transcribe":
|
65 |
+
options = dict(task="transcribe", best_of=5)
|
66 |
+
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
|
67 |
+
vtt = getSubs(results["segments"], "vtt", 80)
|
68 |
+
srt = getSubs(results["segments"], "srt", 80)
|
69 |
+
lang = results["language"]
|
70 |
+
return results["text"], vtt, srt, lang
|
71 |
+
elif task == "Translate":
|
72 |
+
options = dict(task="translate", best_of=5)
|
73 |
+
results = loaded_model.transcribe(f"{save_dir}/output.wav", **options)
|
74 |
+
vtt = getSubs(results["segments"], "vtt", 80)
|
75 |
+
srt = getSubs(results["segments"], "srt", 80)
|
76 |
+
lang = results["language"]
|
77 |
+
return results["text"], vtt, srt, lang
|
78 |
+
else:
|
79 |
+
raise ValueError("Task not supported")
|
80 |
+
|
81 |
+
|
82 |
+
def getSubs(segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
|
83 |
+
segmentStream = StringIO()
|
84 |
+
|
85 |
+
if format == 'vtt':
|
86 |
+
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
|
87 |
+
elif format == 'srt':
|
88 |
+
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
|
89 |
+
else:
|
90 |
+
raise Exception("Unknown format " + format)
|
91 |
+
|
92 |
+
segmentStream.seek(0)
|
93 |
+
return segmentStream.read()
|
94 |
+
|
95 |
+
|
96 |
+
def main():
|
97 |
+
size = st.selectbox("Select Model Size (The larger the model, the more accurate the transcription will be, but it will take longer)", ["tiny", "base", "small", "medium", "large"], index=1)
|
98 |
+
loaded_model = change_model(current_size, size)
|
99 |
+
st.write(f"Model is {'multilingual' if loaded_model.is_multilingual else 'English-only'} "
|
100 |
+
f"and has {sum(np.prod(p.shape) for p in loaded_model.parameters()):,} parameters.")
|
101 |
+
input_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"])
|
102 |
+
if input_file is not None:
|
103 |
+
filename = input_file.name[:-4]
|
104 |
+
else:
|
105 |
+
filename = None
|
106 |
+
task = st.selectbox("Select Task", ["Transcribe", "Translate"], index=0)
|
107 |
+
if task == "Transcribe":
|
108 |
+
if st.button("Transcribe"):
|
109 |
+
results = inferecence(loaded_model, input_file, task)
|
110 |
+
col3, col4 = st.columns(2)
|
111 |
+
col5, col6, col7 = st.columns(3)
|
112 |
+
col9, col10 = st.columns(2)
|
113 |
+
|
114 |
+
with col3:
|
115 |
+
st.audio(input_file)
|
116 |
+
|
117 |
+
with open("transcript.txt", "w+", encoding='utf8') as f:
|
118 |
+
f.writelines(results[0])
|
119 |
+
f.close()
|
120 |
+
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
121 |
+
datatxt = f.read()
|
122 |
+
|
123 |
+
|
124 |
+
with open("transcript.vtt", "w+",encoding='utf8') as f:
|
125 |
+
f.writelines(results[1])
|
126 |
+
f.close()
|
127 |
+
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
|
128 |
+
datavtt = f.read()
|
129 |
+
|
130 |
+
with open("transcript.srt", "w+",encoding='utf8') as f:
|
131 |
+
f.writelines(results[2])
|
132 |
+
f.close()
|
133 |
+
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
|
134 |
+
datasrt = f.read()
|
135 |
+
|
136 |
+
with col5:
|
137 |
+
st.download_button(label="Download Transcript (.txt)",
|
138 |
+
data=datatxt,
|
139 |
+
file_name="transcript.txt")
|
140 |
+
with col6:
|
141 |
+
st.download_button(label="Download Transcript (.vtt)",
|
142 |
+
data=datavtt,
|
143 |
+
file_name="transcript.vtt")
|
144 |
+
with col7:
|
145 |
+
st.download_button(label="Download Transcript (.srt)",
|
146 |
+
data=datasrt,
|
147 |
+
file_name="transcript.srt")
|
148 |
+
with col9:
|
149 |
+
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
|
150 |
+
with col10:
|
151 |
+
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
|
152 |
+
|
153 |
+
elif task == "Translate":
|
154 |
+
if st.button("Translate to English"):
|
155 |
+
results = inferecence(loaded_model, input_file, task)
|
156 |
+
col3, col4 = st.columns(2)
|
157 |
+
col5, col6, col7 = st.columns(3)
|
158 |
+
col9, col10 = st.columns(2)
|
159 |
+
|
160 |
+
with col3:
|
161 |
+
st.audio(input_file)
|
162 |
+
|
163 |
+
with open("transcript.txt", "w+", encoding='utf8') as f:
|
164 |
+
f.writelines(results[0])
|
165 |
+
f.close()
|
166 |
+
with open(os.path.join(os.getcwd(), "transcript.txt"), "rb") as f:
|
167 |
+
datatxt = f.read()
|
168 |
+
|
169 |
+
|
170 |
+
with open("transcript.vtt", "w+",encoding='utf8') as f:
|
171 |
+
f.writelines(results[1])
|
172 |
+
f.close()
|
173 |
+
with open(os.path.join(os.getcwd(), "transcript.vtt"), "rb") as f:
|
174 |
+
datavtt = f.read()
|
175 |
+
|
176 |
+
with open("transcript.srt", "w+",encoding='utf8') as f:
|
177 |
+
f.writelines(results[2])
|
178 |
+
f.close()
|
179 |
+
with open(os.path.join(os.getcwd(), "transcript.srt"), "rb") as f:
|
180 |
+
datasrt = f.read()
|
181 |
+
|
182 |
+
with col5:
|
183 |
+
st.download_button(label="Download Transcript (.txt)",
|
184 |
+
data=datatxt,
|
185 |
+
file_name="transcript.txt")
|
186 |
+
with col6:
|
187 |
+
st.download_button(label="Download Transcript (.vtt)",
|
188 |
+
data=datavtt,
|
189 |
+
file_name="transcript.vtt")
|
190 |
+
with col7:
|
191 |
+
st.download_button(label="Download Transcript (.srt)",
|
192 |
+
data=datasrt,
|
193 |
+
file_name="transcript.srt")
|
194 |
+
with col9:
|
195 |
+
st.success("You can download the transcript in .srt format, edit it (if you need to) and upload it to YouTube to create subtitles for your video.")
|
196 |
+
with col10:
|
197 |
+
st.info("Streamlit refreshes after the download button is clicked. The data is cached so you can download the transcript again without having to transcribe the video again.")
|
198 |
+
|
199 |
+
else:
|
200 |
+
st.error("Please select a task.")
|
201 |
+
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
main()
|
205 |
+
st.markdown("###### Made with :heart: by [@BatuhanYılmaz](https://twitter.com/batuhan3326) [![this is an image link](https://i.imgur.com/thJhzOO.png)](https://www.buymeacoffee.com/batuhanylmz)")
|