Spaces:
Sleeping
Sleeping
| """ | |
| Coral Reef Health | |
| """ | |
| import gradio as gr | |
| import tensorflow as tf | |
| import glob | |
| import numpy as np | |
| from PIL import Image | |
| model_path = "models" | |
| model = tf.saved_model.load(model_path) | |
| classes = [ "bleached" , "healthy" , ] | |
| def run(image_path): | |
| img = Image.open(image_path).convert('RGB') | |
| img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) | |
| inp_numpy = np.array(img)[None] | |
| inp = tf.constant(inp_numpy, dtype='float32') | |
| class_scores = model(inp)[0].numpy() | |
| print(class_scores) | |
| state = classes[class_scores.argmax()] | |
| return state | |
| title = "Coral Health" | |
| description = ( | |
| "" | |
| ) | |
| examples = glob.glob("images/*.jpg") | |
| interface = gr.Interface( | |
| run, | |
| inputs=[gr.components.Image(type="filepath")], | |
| outputs="text", | |
| #outputs=gradio.outputs.Label(num_top_classes=3), | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| ) | |
| interface.queue().launch() | |