|
import streamlit as st |
|
from openai import OpenAI |
|
import os |
|
import sys |
|
from dotenv import load_dotenv, dotenv_values |
|
load_dotenv() |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1", |
|
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') |
|
) |
|
|
|
|
|
model_links = { |
|
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407", |
|
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", |
|
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", |
|
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2", |
|
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", |
|
"Mistral-Small-Instruct-2409": "mistralai/Mistral-Small-Instruct-2409", |
|
} |
|
|
|
|
|
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg", |
|
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg", |
|
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg", |
|
"1326984c-39b0-492c-a773-f120d747a7e2.jpg", |
|
"42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg", |
|
"8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg", |
|
"ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg", |
|
"027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg", |
|
"08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg", |
|
"0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg", |
|
"0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg", |
|
"6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg", |
|
"bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"] |
|
|
|
|
|
|
|
def reset_conversation(): |
|
''' |
|
Resets Conversation |
|
''' |
|
st.session_state.conversation = [] |
|
st.session_state.messages = [] |
|
return None |
|
|
|
def get_assistant_aswer(st_model, st_messages, st_temp_value, st_max_tokens): |
|
response = "" |
|
|
|
|
|
stream = client.chat.completions.create( |
|
model=st_model, |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st_messages |
|
], |
|
temperature=st_temp_value, |
|
stream=True, |
|
max_tokens=st_max_tokens, |
|
) |
|
|
|
for chunk in stream: |
|
response = response + chunk.choices[0].delta.content |
|
|
|
|
|
|
|
|
|
return response |
|
|
|
def retry_last(): |
|
lastmessage = st.session_state.messages.pop() |
|
st.toast("popped msg: " + lastmessage["content"] + " // model: " + model_links[selected_model]) |
|
|
|
|
|
|
|
|
|
|
|
return None |
|
|
|
|
|
|
|
models =[key for key in model_links.keys()] |
|
|
|
|
|
selected_model = st.sidebar.selectbox("Select Model", models) |
|
|
|
|
|
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) |
|
|
|
|
|
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, (5000)) |
|
|
|
|
|
st.sidebar.button('Reset Chat', on_click=reset_conversation) |
|
|
|
|
|
|
|
st.sidebar.write(f"You're now chatting with **{selected_model}**") |
|
st.sidebar.markdown("*Generated content may be inaccurate or false.*") |
|
|
|
|
|
|
|
|
|
|
|
if "prev_option" not in st.session_state: |
|
st.session_state.prev_option = selected_model |
|
|
|
if st.session_state.prev_option != selected_model: |
|
st.session_state.messages = [] |
|
|
|
st.session_state.prev_option = selected_model |
|
reset_conversation() |
|
|
|
|
|
|
|
|
|
repo_id = model_links[selected_model] |
|
|
|
|
|
st.subheader(f'{selected_model}') |
|
|
|
|
|
|
|
if selected_model not in st.session_state: |
|
st.session_state[selected_model] = model_links[selected_model] |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
if st.button("retry", key=retry): |
|
retry_last() |
|
|
|
|
|
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): |
|
|
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
response = get_assistant_aswer(model_links[selected_model], st.session_state.messages, temp_values, max_token_value) |
|
with st.chat_message("assistant"): |
|
st.write(response) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|